581 research outputs found

    Accidental Hypothermia in a Swiss Alpine Trauma Centre-Not an Alpine Problem.

    Get PDF
    BACKGROUND Research in accidental hypothermia focuses on trauma patients, patients exposed to cold environments or patients after drowning but rarely on hypothermia in combination with intoxications or on medical or neurological issues. The aim of this retrospective single-centre cohort study was to define the aetiologies, severity and relative incidences of accidental hypothermia, methods of measuring temperature and in-hospital mortality. METHODS The study included patients ≄18 years with a documented body temperature ≀35 °C who were admitted to the emergency department (ED) of the University Hospital in Bern between 2000 and 2019. RESULTS 439 cases were included, corresponding to 0.32 per 1000 ED visits. Median age was 55 years (IQR 39-70). A total of 167 patients (38.0%) were female. Furthermore, 63.3% of the patients suffered from mild, 24.8% from moderate and 11.9% from severe hypothermia. Exposure as a single cause for accidental hypothermia accounted for 12 cases. The majority were combinations of hypothermia with trauma (32.6%), medical conditions (34.2%), neurological conditions (5.2%), intoxications (20.3%) or drowning (12.0%). Overall mortality was 22.3% and depended on the underlying causes, severity of hypothermia, age and sex

    Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling

    Get PDF
    Evapotranspiration (ET) is critical in linking global water, carbon and energy cycles. However, direct measurement of global terrestrial ET is not feasible. Here, we first reviewed the basic theory and state-of-the-art approaches for estimating global terrestrial ET, including remote-sensing-based physical models, machine-learning algorithms and land surface models (LSMs). We then utilized 4 remote-sensing-based physical models, 2 machine-learning algorithms and 14 LSMs to analyze the spatial and temporal variations in global terrestrial ET. The results showed that the ensemble means of annual global terrestrial ET estimated by these three categories of approaches agreed well, with values ranging from 589.6 mm yr−1 (6.56×104 km3 yr−1) to 617.1 mm yr−1 (6.87×104 km3 yr−1). For the period from 1982 to 2011, both the ensembles of remote-sensing-based physical models and machine-learning algorithms suggested increasing trends in global terrestrial ET (0.62 mm yr−2 with a significance level of p0.05), although many of the individual LSMs reproduced an increasing trend. Nevertheless, all 20 models used in this study showed that anthropogenic Earth greening had a positive role in increasing terrestrial ET. The concurrent small interannual variability, i.e., relative stability, found in all estimates of global terrestrial ET, suggests that a potential planetary boundary exists in regulating global terrestrial ET, with the value of this boundary being around 600 mm yr−1. Uncertainties among approaches were identified in specific regions, particularly in the Amazon Basin and arid/semiarid regions. Improvements in parameterizing water stress and canopy dynamics, the utilization of new available satellite retrievals and deep-learning methods, and model–data fusion will advance our predictive understanding of global terrestrial ET

    Are Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink?

    Get PDF
    The Global Carbon Project estimates that the terrestrial biosphere has absorbed about one-third of anthropogenic CO2_2 emissions during the 1959–2019 period. This sink-estimate is produced by an ensemble of terrestrial biosphere models and is consistent with the land uptake inferred from the residual of emissions and ocean uptake. The purpose of our study is to understand how well terrestrial biosphere models reproduce the processes that drive the terrestrial carbon sink. One challenge is to decide what level of agreement between model output and observation-based reference data is adequate considering that reference data are prone to uncertainties. To define such a level of agreement, we compute benchmark scores that quantify the similarity between independently derived reference data sets using multiple statistical metrics. Models are considered to perform well if their model scores reach benchmark scores. Our results show that reference data can differ considerably, causing benchmark scores to be low. Model scores are often of similar magnitude as benchmark scores, implying that model performance is reasonable given how different reference data are. While model performance is encouraging, ample potential for improvements remains, including a reduction in a positive leaf area index bias, improved representations of processes that govern soil organic carbon in high latitudes, and an assessment of causes that drive the inter-model spread of gross primary productivity in boreal regions and humid tropics. The success of future model development will increasingly depend on our capacity to reduce and account for observational uncertainties

    Contrasting effects of CO₂ fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO₂ exchange

    Get PDF
    Continuous atmospheric CO₂ monitoring data indicate an increase in the amplitude of seasonal CO₂-cycle exchange (SCA_(NBP)) in northern high latitudes. The major drivers of enhanced SCA_(NBP) remain unclear and intensely debated, with land-use change, CO₂ fertilization and warming being identified as likely contributors. We integrated CO₂-flux data from two atmospheric inversions (consistent with atmospheric records) and from 11 state-of-the-art land-surface models (LSMs) to evaluate the relative importance of individual contributors to trends and drivers of the SCA_(NBP) of CO₂ fluxes for 1980–2015. The LSMs generally reproduce the latitudinal increase in SCA_(NBP) trends within the inversions range. Inversions and LSMs attribute SCA_(NBP) increase to boreal Asia and Europe due to enhanced vegetation productivity (in LSMs) and point to contrasting effects of CO₂ fertilization (positive) and warming (negative) on SCA_(NBP). Our results do not support land-use change as a key contributor to the increase in SCA_(NBP). The sensitivity of simulated microbial respiration to temperature in LSMs explained biases in SCA_(NBP) trends, which suggests that SCA_(NBP) could help to constrain model turnover times

    Massive Stars: Their Environment and Formation

    Get PDF
    Cloud environment is thought to play a critical role in determining the mechanism of formation of massive stars. In this contribution we review the physical characteristics of the environment around recently formed massive stars. Particular emphasis is given to recent high angular resolution observations which have improved our knowledge of the physical conditions and kinematics of compact regions of ionized gas and of dense and hot molecular cores associated with luminous O and B stars. We will show that this large body of data, gathered during the last decade, has allowed significant progress in the understanding of the physical processes that take place during the formation and early evolution of massive stars.Comment: Pub. Astron. Soc. of Pacific (Invited Review), 95 pages (Latex), 5 pages (tables, Latex), 11 postscript or gif figure

    Seismic Wave Attenuation in Carbonates

    Get PDF
    The effect of pore fluids on seismic wave attenuation in carbonate rocks is important for interpreting remote sensing observations of carbonate reservoirs undergoing enhanced oil recovery. Here we measure the elastic moduli and attenuation in the laboratory for five carbonate samples with 20% to 30% porosity and permeability between 0.03 and 58.1 mdarcy. Contrary to most observations in sandstones, bulk compressibility losses dominate over shear wave losses for dry samples and samples fully saturated with either liquid butane or brine. This observation holds for four out of five samples at seismic (10–1000 Hz) and ultrasonic frequencies (0.8 MHz) and reservoir pressures. Attenuation modeled from the modulus data using Cole-Cole relations agrees in that the bulk losses are greater than the shear losses. On average, attenuation increases by 250% when brine substitutes a light hydrocarbon in these carbonate rocks. For some of our samples, attenuation is frequency-dependent, but in the typical exploration frequency range (10–100 Hz), attenuation is practically constant for the measured samples

    Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity

    Get PDF
    In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 11 vegetation models, we show that spring conditions promoted increased vegetation growth, which, in turn, contributed to fast soil moisture depletion, amplifying the summer drought. We find regional asymmetries in summer ecosystem carbon fluxes: increased (reduced) sink in the northern (southern) areas affected by drought. These asymmetries can be explained by distinct legacy effects of spring growth and of water-use efficiency dynamics mediated by vegetation composition, rather than by distinct ecosystem responses to summer heat/drought. The asymmetries in carbon and water exchanges during spring and summer 2018 suggest that future land-management strategies could influence patterns of summer heat waves and droughts under long-term warming
    • 

    corecore