144 research outputs found

    Caveolin-1 deficiency alters plasma lipid and lipoprotein profiles in mice.

    Get PDF
    Caveolae are specialized membrane microdomains formed as the result of local accumulation of cholesterol, glycosphingolipids, and the structural protein caveolin-1 (Cav-1). To further elucidate the role of Cav-1 in lipid homeostasis in-vivo, we analyzed fasting and post-prandial plasma from Cav-1 deficient mice on low or on high fat diet. In total plasma analysis, an increase in ceramide and hexosylceramide was observed. In cholesteryl ester (CE), we found an increased saturated+monounsaturated/polyunsaturated fatty acid ratio in fasting plasma of low fat fed Cav-1(-/-) mice with increased proportions of CE16:1, CE18:1, CE20:3, and decreased proportions of CE18:2 and CE22:6. Under high fat diet HDL-CE, free cholesterol and pre-beta-HDL were increased accompanied by a shift from slow to fast migrating alpha-HDL and expansion of apoE containing HDL. Our results demonstrate a significant role of Cav-1 in HDL-cholesterol metabolism and may reflect a variety of Cav-1 functions including modulation of ACAT activity and SR-BI function

    Measuring the Effectiveness of Gamesourcing Expert Oil Painting Annotations

    Full text link

    Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): model description and evaluation

    Get PDF
    Recently, the aerosol microphysics submodel MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, third generation) was introduced as a successor to MADE and MADE-in. It includes nine aerosol species and nine lognormal modes to represent aerosol particles of three different mixing states throughout the aerosol size spectrum. Here, we describe the implementation of the most recent version of MADE3 into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, including a detailed evaluation of a 10-year aerosol simulation with MADE3 as part of EMAC.We compare simulation output to station network measurements of near-surface aerosol component mass concentrations, to airborne measurements of aerosol mass mixing ratio and number concentration vertical profiles, to ground-based and airborne measurements of particle size distributions, and to station network and satellite measurements of aerosol optical depth. Furthermore, we describe and apply a new evaluation method, which allows a comparison of model output to size-resolved electron microscopy measurements of particle composition. Although there are indications that fine-mode particle deposition may be underestimated by the model, we obtained satisfactory agreement with the observations. Remaining deviations are of similar size to those identified in other global aerosol model studies.Thus, MADE3 can be considered ready for application within EMAC. Due to its detailed representation of aerosol mixing state, it is especially useful for simulating wet and dry removal of aerosol particles, aerosol-induced formation of cloud droplets and ice crystals as well as aerosol–radiation interactions. Besides studies on these fundamental processes, we also plan to use MADE3 for a reassessment of the climate effects of anthropogenic aerosol perturbations.</p

    Super Resolution Fluorescence Microscopy and Tracking of Bacterial Flotillin (Reggie) Paralogs Provide Evidence for Defined-Sized Protein Microdomains within the Bacterial Membrane but Absence of Clusters Containing Detergent-Resistant Proteins

    Get PDF
    Biological membranes have been proposed to contain microdomains of a specific lipid composition, in which distinct groups of proteins are clustered. Flotillin-like proteins are conserved between pro—and eukaryotes, play an important function in several eukaryotic and bacterial cells, and define in vertebrates a type of so-called detergent-resistant microdomains. Using STED microscopy, we show that two bacterial flotillins, FloA and FloT, form defined assemblies with an average diameter of 85 to 110 nm in the model bacterium Bacillus subtilis. Interestingly, flotillin microdomains are of similar size in eukaryotic cells. The soluble domains of FloA form higher order oligomers of up to several hundred kDa in vitro, showing that like eukaryotic flotillins, bacterial assemblies are based in part on their ability to self-oligomerize. However, B. subtilis paralogs show significantly different diffusion rates, and consequently do not colocalize into a common microdomain. Dual colour time lapse experiments of flotillins together with other detergent-resistant proteins in bacteria show that proteins colocalize for no longer than a few hundred milliseconds, and do not move together. Our data reveal that the bacterial membrane contains defined-sized protein domains rather than functional microdomains dependent on flotillins. Based on their distinct dynamics, FloA and FloT confer spatially distinguishable activities, but do not serve as molecular scaffolds

    Towards low‐cost community networks in rural communities: The impact of context using the case study of Beitbridge, Zimbabwe

    Get PDF
    Most rural communities in developing countries such as Zimbabwe are underserved and/or unserved with regard to telecommunication connectivity. Governments in developing countries are also under‐resourced to provide adequate digital infrastructure. Thus, community networks are increasingly seen as viable alternatives to bridge the infrastructure gap in Africa. However, new infrastructure interventions in developing countries face many challenges including complex interventions stemming from complex policies inserted into complex sociopolitical environments. The success of community networks in other African countries prompts this investigation into the potential of transferring the community network approach to Zimbabwe. The objective of this article is to frame how context impacts development of digital infrastructure. Zimbabwe's telecommunication regulatory framework is on the verge of countenancing the development of community networks, and for this reason, there is need for research to inform would‐be investors, policy makers, and other stakeholders such as academia, NGOs, and communities themselves, on how the sociopolitical and economic environment impact these efforts. This is important because successful deployment of a community network may result in improved community development, eg, in food security, health, and education

    Proteomic Characterization of Cellular and Molecular Processes that Enable the Nanoarchaeum equitans-Ignicoccus hospitalis Relationship

    Get PDF
    Nanoarchaeum equitans, the only cultured representative of the Nanoarchaeota, is dependent on direct physical contact with its host, the hyperthermophile Ignicoccus hospitalis. The molecular mechanisms that enable this relationship are unknown. Using whole-cell proteomics, differences in the relative abundance of >75% of predicted protein-coding genes from both Archaea were measured to identify the specific response of I. hospitalis to the presence of N. equitans on its surface. A purified N. equitans sample was also analyzed for evidence of interspecies protein transfer. The depth of cellular proteome coverage achieved here is amongst the highest reported for any organism. Based on changes in the proteome under the specific conditions of this study, I. hospitalis reacts to N. equitans by curtailing genetic information processing (replication, transcription) in lieu of intensifying its energetic, protein processing and cellular membrane functions. We found no evidence of significant Ignicoccus biosynthetic enzymes being transported to N. equitans. These results suggest that, under laboratory conditions, N. equitans diverts some of its host's metabolism and cell cycle control to compensate for its own metabolic shortcomings, thus appearing to be entirely dependent on small, transferable metabolites and energetic precursors from I. hospitalis

    "It's what midwifery is all about": Western Australian midwives' experiences of being 'with woman' during labour and birth in the known midwife model

    Get PDF
    Background: The phenomenon of being 'with woman' is fundamental to midwifery as it underpins its philosophy, relationships and practices. There is an identified gap in knowledge around the 'with woman' phenomenon from the perspective of midwives providing care in a variety of contexts. As such, the aim of this study was to explore the experiences of being 'with woman' during labour and birth from the perspective of midwives' working in a model where care is provided by a known midwife. Methods: A descriptive phenomenological design was employed with ten midwives working in a 'known midwife' model who described their experiences of being 'with woman' during labour and birth. The method was informed by Husserlian philosophy which seeks to explore the same phenomenon through rich descriptions by individuals revealing commonalities of the experience. Results: Five themes emerged 1) Building relationships; 2) Woman centred care; 3) Impact on the midwife; 4) Impact on the woman; and 5) Challenges in the Known Midwife model. Midwives emphasised the importance of trusting relationships while being 'with woman', confirming that this relationship extends beyond the woman - midwife relationship to include the woman's support people and family. Being 'with woman' during labour and birth in the context of the relationship facilitates woman-centred care. Being 'with woman' influences midwives, and, it is noted, the women that midwives are working with. Finally, challenges that impact being 'with woman' in the known midwife model are shared by midwives. Conclusions: Findings offer valuable insight into midwives' experiences of being 'with woman' in the context of models that provide care by a known midwife. In this model, the trusting relationship is the conduit for being 'with woman' which influences the midwife, the profession of midwifery, as well as women and their families. Descriptions of challenges to being 'with woman' provide opportunities for professional development and service review. Rich descriptions from the unique voice of midwives, provided insight into the applied practices of being 'with woman' in a known midwife model which adds important knowledge concerning a phenomenon so deeply embedded in the philosophy and practices of the profession of midwifery

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk

    Get PDF
    Combined analyses of gene networks and DNA sequence variation can provide new insights into the aetiology of common diseases that may not be apparent from genome-wide association studies alone. Recent advances in rat genomics are facilitating systems-genetics approaches. Here we report the use of integrated genome-wide approaches across seven rat tissues to identify gene networks and the loci underlying their regulation. We defined an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) enriched for viral response genes, which represents a molecular biomarker for macrophages and which was regulated in multiple tissues by a locus on rat chromosome 15q25. We show that Epstein-Barr virus induced gene 2 (Ebi2, also known as Gpr183), which lies at this locus and controls B lymphocyte migration, is expressed in macrophages and regulates the IDIN. The human orthologous locus on chromosome 13q32 controlled the human equivalent of the IDIN, which was conserved in monocytes. IDIN genes were more likely to associate with susceptibility to type 1 diabetes (T1D)-a macrophage-associated autoimmune disease-than randomly selected immune response genes (P = 8.85 x 10(-6)). The human locus controlling the IDIN was associated with the risk of T1D at single nucleotide polymorphism rs9585056 (P = 7.0 x 10(-10); odds ratio, 1.15), which was one of five single nucleotide polymorphisms in this region associated with EBI2 (GPR183) expression. These data implicate IRF7 network genes and their regulatory locus in the pathogenesis of T1D
    corecore