80 research outputs found

    Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients

    Get PDF
    Electroencephalography is mandatory to determine the epilepsy syndrome. However, for the precise localization of the irritative zone in patients with focal epilepsy, costly and sometimes cumbersome imaging techniques are used. Recent small studies using electric source imaging suggest that electroencephalography itself could be used to localize the focus. However, a large prospective validation study is missing. This study presents a cohort of 152 operated patients where electric source imaging was applied as part of the pre-surgical work-up allowing a comparison with the results from other methods. Patients (n = 152) with >1 year postoperative follow-up were studied prospectively. The sensitivity and specificity of each imaging method was defined by comparing the localization of the source maximum with the resected zone and surgical outcome. Electric source imaging had a sensitivity of 84% and a specificity of 88% if the electroencephalogram was recorded with a large number of electrodes (128–256 channels) and the individual magnetic resonance image was used as head model. These values compared favourably with those of structural magnetic resonance imaging (76% sensitivity, 53% specificity), positron emission tomography (69% sensitivity, 44% specificity) and ictal/interictal single-photon emission-computed tomography (58% sensitivity, 47% specificity). The sensitivity and specificity of electric source imaging decreased to 57% and 59%, respectively, with low number of electrodes (<32 channels) and a template head model. This study demonstrated the validity and clinical utility of electric source imaging in a large prospective study. Given the low cost and high flexibility of electroencephalographic systems even with high channel counts, we conclude that electric source imaging is a highly valuable tool in pre-surgical epilepsy evaluation

    Experimental Proof of Adjustable Single-Knob Ion Beam Emittance Partitioning

    Get PDF
    The performance of accelerators profits from phase-space tailoring by coupling of degrees of freedom. Previously applied techniques swap the emittances among the three degrees but the set of available emittances is fixed. In contrast to these emittance exchange scenarios, the emittance transfer scenario presented here allows for arbitrarily changing the set of emittances as long as the product of the emittances is preserved. This Letter is the first experimental demonstration of transverse emittance transfer along an ion beam line. The amount of transfer is chosen by setting just one single magnetic field value. The envelope functions (beta) and slopes (alpha) of the finally uncorrelated and repartitioned beam at the exit of the transfer line do not depend on the amount of transfer.close

    Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams

    Get PDF
    In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. In this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. The new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. The corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.close0

    Field stabilization of Alvarez-type cavities

    No full text
    Alvarez-type cavities are commonly used to reliably accelerate high quality hadron beams. Optimization of their longitudinal field homogeneity is usually accomplished by post-couplers, i.e., additional rods being integrated into the cavity. This paper instead proposes to use the stems that keep the drift tubes for that purpose. As their individual azimuthal orientations do not change the cavity’s undisturbed operational mode, they comprise a set of free parameters that can be used to modify higher mode field patterns. The latter have significant impact on the robustness of the operational mode with respect to eventual perturbations. Several optimized stem configurations are presented and benchmarked against each other. The path to obtain these configurations is paved analytically and worked out in detail through simulations. It is shown also by measurements that the method provides for flat field distributions and very low field tilt sensitivities without insertion of post-couplers

    Single-knob beam line for transverse emittance partitioning

    Get PDF
    Flat beams feature unequal emittances in the horizontal and vertical phase space. Such beams were created successfully in electron machines by applying effective stand-alone solenoid fringe fields in the electron gun. Extension of this method to ion beams was proposed conceptually. The present paper is on the decoupling capabilities of an ion beam emittance transfer line. The proposed beam line provides a single-knob tool to partition the horizontal and vertical rms emittances, while keeping the product of the two emittances constant as well as the transverse rms Twiss parameters (α_{x,y} and β_{x,y}) in both planes. It is shown that this single knob is the solenoid field strength
    corecore