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Flat beams feature unequal emittances in the horizontal and vertical phase space. Such beams were

created successfully in electron machines by applying effective stand-alone solenoid fringe fields in the

electron gun. Extension of this method to ion beams was proposed conceptually. The present paper is on

the decoupling capabilities of an ion beam emittance transfer line. The proposed beam line provides a

single-knob tool to partition the horizontal and vertical rms emittances, while keeping the product of the

two emittances constant as well as the transverse rms Twiss parameters (�x;y and �x;y) in both planes. It is

shown that this single knob is the solenoid field strength.
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I. INTRODUCTION

The modification of projected beam emittances under

preservation of the full six-dimensional emittance became

a matter of interest for many accelerator applications. First

experiments were proposed and conducted in [1,2] at elec-

tron machines about a decade ago. The issue is of special

interest for increasing the performance of x-ray free

electron lasers and advanced approaches to emittance re-

partitioning are under conceptual and experimental inves-

tigation [3–8]. Flat hadron beams could facilitate the

process of multiturn injection into circular machines,

which imposes different requirements on the horizontal

and vertical emittance of the incoming beam. Recently, it

was proposed to use flat beams in hadron-hadron collisions

to provide higher luminosity by mitigating beam-beam

effects [9,10]. The mass resolution of spectrometers is

increased significantly if the beam is flat perpendicular to

the direction of the spectrometers bend. A corresponding

setup behind an electron-cyclotron-resonance source is

proposed in [11].

From first principles beams are created round without

any coupling among planes. Their rms emittances as well

as their eigen-emittances are equal in the two transverse

planes. Thus, any transverse round-to-flat transformation

requires a change of the beam eigen-emittances by a non-

symplectic transformation [12]. Such a transformation can

be performed by placing a charge state stripper inside an

axial magnetic field region as proposed in [13]. Inside such

a solenoid stripper, transverse interplane correlations are

created nonsymplectically. Afterwards they are removed

symplectically by a decoupling section including skew

quadrupoles. It must be mentioned that the use of charge

state strippers (outside from solenoids) is state of the art

at several ion machines that provide highly charged ions

[14–16].

It is emphasized that the paper is on the application of

coupled beam dynamics aiming for increased performance

of an accelerator chain. It is not on coupled beam dynamics

theory itself and references are given whenever needed.

The paper starts with a reintroduction of the required terms

of coupled beam dynamics. Afterwards the beam line for

transverse emittance transfer is presented. The fourth sec-

tion is on modeling the nonsymplectic process of charge

state stripping inside a solenoid followed by the treatment

of the symplectic decoupling section. The decoupling and

matching capabilities of the setup are remarkably flexible

and the impact and discussion of these findings are treated

in dedicated sections. The paper puts some emphasis on the

detailed description of the beam line and beam parameters

since its decoupling and matching features were found

within the preparation of the experimental proof of princi-

ple of emittance transfer by means of tracking simulations.

II. BASIC TERMS

The four-dimensional symmetric beam matrix

C ¼

hxxi hxx0i hxyi hxy0i
hx0xi hx0x0i hx0yi hx0y0i
hyxi hyx0i hyyi hyy0i
hy0xi hy0x0i hy0yi hy0y0i
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(1)

contains ten unique elements, four of which describe the

coupling. If at least one of the elements of the off-diagonal

submatrix is nonzero, the beam is x-y coupled. The four-

dimensional rms emittance "4d is the square root of the

determinant of C, and the projected beam rms emittances

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 16, 044201 (2013)

1098-4402=13=16(4)=044201(9) 044201-1 Published by the American Physical Society



"x and "y are the square roots of the determinants of the

on-diagonal submatrices, i.e., phase space area divided by

�. Diagonalization of the beam matrix yields the eigen-

emittances "1 and "2,

�C ¼ MCMT ¼

"1 0 0 0

0 "1 0 0

0 0 "2 0

0 0 0 "2
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; (2)

with

"1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�tr½ðCJÞ2� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr2½ðCJÞ2� � 16 detðCÞ
q

r

; (3)

"2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�tr½ðCJÞ2� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr2½ðCJÞ2� � 16 detðCÞ
q

r

; (4)

as shown in Appendix A. The four-dimensional matrix J is
the skew-symmetric matrix with nonzero entries on the

block diagonal off form. Any symplectic transformationM
obeys

MTJM ¼ J; J ¼

0 1 0 0

�1 0 0 0

0 0 0 1

0 0 �1 0
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: (5)

Eigen-emittances are invariant under symplectic

transformations and the eigen-emittances are equal to the

rms emittances if and only if interplane correlations are

zero.

III. EMITTANCE TRANSFER BEAM LINE

The planned emittance transfer experiment (EMTEX)

beam line for the demonstration of transverse rms emit-

tance transfer is shown in Fig. 1. The EMTEX section

comprises two quadrupole doublets, a solenoid with strip-

per foil inside, a quadrupole triplet, a skew quadrupole

triplet, another quadrupole triplet, a current transformer,

and a transverse emittance measurement unit. Its total

length is about 13 m. Centering of the beam can be done

through a grid a few meters in front of the first doublet, the

grid of the emittance measurement setup, and finally by

observing the foil on-line, i.e., the light emission from the

impacting beam.

In order to mitigate four-dimensional rms emittance

growth from scattering during the stripping process, the

beam sizes on the stripper foil should be kept as small as

possible. Two quadrupole doublets separated by a drift

space in front of the solenoid do the required matching.

A low intensity beam of Dþ
6 [17,18], previously acceler-

ated to 11:4 MeV=u at 108 MHz and stripped to 3Dþ
2 in a

22 �g=cm2 carbon foil placed at the center of a solenoid

will be used, and the total relative momentum spread of the

beam is less than �5� 10�4 as verified by Schottky

spectra in the synchrotron served by our linac. The maxi-

mum longitudinal magnetic field is 1.0 T. This nonsym-

plectic transformation creates x-y coupling between the

transverse planes. The nonsymplecticity is from omission

of parts of the full system comprising the stripping process.

It includes the incoming beam particle nuclei, their resid-

ual electrons, and the nuclei and electrons of the stripping

foil atoms. However, for the beam dynamics just the

stripped beam ions are kept in the system. The stripping

atoms and the stripped-off electrons are removed artifi-

cially from the system. This removal is nonsymplectic.

A quadrupole triplet and a skew quadrupole triplet

separated by a drift space are employed to remove these

correlations symplectically. The section from the solenoid

exit to the skew triplet exit will be called decoupling

section in the following. A final quadrupole triplet is

used for matching to the existing beam line followed by

a beam current transformer and an emittance measurement

unit. The full beam line is presented quantitatively in

Appendix B.

IV. STRIPPING INSIDE A SOLENOID

Stripping inside a solenoid is fundamentally different

from stripping between two solenoids due to the longitu-

dinal magnetic field component and the fringe fields. In

case of pure transverse field components (dipoles, quadru-

poles, n-poles), there is equivalence between stripping in-

side this magnet and stripping between two such magnets

of half lengths.

Let C0 denote the second moment matrix at the entrance

of the solenoid. If the beam has equal horizontal and

vertical rms emittances and no interplane correlations,

the beam matrix can be simplified to (in the case here,

�x;y ¼ 0)

C0 ¼

"� 0 0 0

0 "
�

0 0

0 0 "� 0

0 0 0 "
�
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: (6)

FIG. 1. Layout of the EMTEX section.
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Assuming a very short solenoid, its transfer matrix can be

divided into two parts:

Rin ¼

1 0 0 0

0 1 kin 0

0 0 1 0

�kin 0 0 1
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;

Rout ¼

1 0 0 0

0 1 �kout 0

0 0 1 0

kout 0 0 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

:

(7)

If the beam rigidity does not change inside the solenoid, kin
is equal to kout, and kin ¼ kout ¼ k. The first part describes
the entrance fringe field and the second part is the exit

fringe field. In here the focusing strength of the solenoid is

k ¼ B

2ðB�Þ : (8)

B is the on-axis magnetic field strength and B� is the beam

rigidity. The beam matrix C1 after the entrance fringe field

k is found as

C1 ¼ RinC1R
T
in

¼

"� 0 0 �k"�

0 "
�
þ k2"� k"� 0

0 k"� "� 0

�k"� 0 0 "
�
þ k2"�
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: (9)

The off-diagonal submatrices describe the correlations and

the values of hxyi and hx0y0i are zero. In order to change the
eigen-emittances, a nonsymplectic transformation has to

be integrated into the round-to-flat transformation section.

The nonsymplectic transformation is accomplished for

instance by changing the beam rigidity B� in between

the fringe fields from ðB�Þin to ðB�Þout through charge state
stripping. Defining

�q :¼ ðB�Þin
ðB�Þout

; (10)

the exit fringe field transfer matrix changes to (kin ¼ k,
kout ¼ �qk)

R0
out ¼

1 0 0 0

0 1 ��qk 0

0 0 1 0

�qk 0 0 1
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: (11)

The focusing strength k of the solenoid is calculated from

the unstripped charge state. The elements of the beam

matrix C0
1 directly after the stripper foil inside of the

solenoid but still before the exit fringe field are

C0
1 ¼

"� 0 0 �k"�

0 "
�
þ k2"�þ �’2 k"� 0

0 k"� "� 0

�k"� 0 0 "
�
þ k2"�þ�’2
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(12)

with stripping scattering effects on the angular spread

being included. The parameter �’2 is the scattering

amount during the stripping process [19], and the stripper

foil itself is modeled by increasing the spread of the

angular distribution through scattering. After the stripper

foil the beam passes through the exit fringe field with

reduced beam rigidity and the beam matrix C0
2 after the

exit fringe field becomes

C0
2 ¼ R0

outC
0
1R

0T
out ¼

"nRn ak"n�nJn

�ak"n�nJn "nRn

" #

; (13)

where a :¼ �q� 1 and

"n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"�

�

"

�
þ a2k2"�þ�’2

�

s

; �n ¼
�"

"n
; (14)

introducing the 2� 2 submatrices Rn and Jn:

Rn ¼
�n 0

0 1
�n

" #

; Jn ¼
0 1

�1 0

" #

: (15)

The amount of eigen-emittance transfer scales with the

longitudinal magnetic field strength and the beam rms sizes

on the stripper. Interplane correlations are created and the

rms emittances and eigen-emittances after the solenoid

with stripper foil read

"x;y ¼ "n; "1;2 ¼ "nð1� ak�nÞ: (16)

The parameter t is introduced to quantify the interplane

coupling. If t defined as

t ¼ "x"y

"1"2
� 1 � 0 (17)
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is equal to zero, there are no interplane correlations and

the beam is fully decoupled. Kim [20] introduced the

beam angular momentum 2� ¼ hxy0 � x0yi and for

an angular momentum dominated beam one finds

t ¼ �2="4d. After the solenoid exit fringe field, the t value
can be calculated as

t ¼ a2k2"�
"
�
þ�’2

(18)

and the four-dimensional rms emittance is

"4d ¼ "1"2 ¼ "2 þ "��’2: (19)

Obtaining this result we neglected the finite solenoid

length, i.e., its central pure longitudinal magnetic field.

Tracking simulations using three-dimensional magnetic

field maps of finite solenoids confirmed that this omission

is justified [21,22]. The four-dimensional rms emittance

increase is proportional to the beam sizes on the stripper

foil. It is purely from scattering in the foil; it is not caused

by the shift of beam rigidity inside the longitudinal mag-

netic field.

V. DECOUPLING SECTION

The simplest skew decoupling section only contains

three skew quadrupoles with appropriate betatron phase

advances in each plane [23,24]. Let Rq be the 4� 4matrix

corresponding to a certain arrangement of quadrupoles and

drift spaces and assume that this channel is represented by

an identity matrix in the x direction and has an additional

90� phase advance in the y direction as in [20]

Rq ¼
In On

On Tn

" #

: (20)

Here the 2� 2 submatrices On, Tn, and In are defined as

On ¼
0 0

0 0

" #

; Tn ¼
0 u

� 1
u

0

" #

; In ¼
1 0

0 1

" #

:

(21)

If the quadrupoles are tilted by 45�, the 4� 4 transfer

matrix can be written as

�R ¼ RrRqR
T
r ¼ 1

2

Tnþ Tn�

Tn� Tnþ

" #

; (22)

where

Rr ¼
ffiffiffi

2
p

2

In In

�In In

" #

; Tn� ¼ Tn � In: (23)

The beam matrix C0
3 after the decoupling section is

C0
3 ¼ �RC0

2
�RT ¼

�þ�nþ 	�n�

	�n� ���nþ

" #

; (24)

and the 2� 2 submatrices �n� are defined through

�n� ¼
u 0

0 � 1
u

" #

; (25)

with

�� ¼ "n
2

�

�n

u
þ u

�n

� 2ak�n

�

; (26)

and

	 ¼ "n
2

�

��n

u
þ u

�n

�

: (27)

Assuming that this beam matrix is diagonal, its x-y com-

ponent vanishes:

	�n� ¼ On (28)

solved by

u ¼ �n: (29)

This result was found earlier in [20] for instance. However,

the major steps have been repeated here since they will be

referred to later. Suppose that the decoupling transfer matrix
�R is able to decouple the two transverse planes ofC0

2.We still

do not know how this transfer beam line looks in detail, but

anyway we calculate the final rms emittances obtaining

"x;y ¼
"n
2

�

�n

u
þ u

�n

� 2ak�n

�

: (30)

This idealized example serves illustrating the principle, and

it may be accomplished with just three skew quadrupoles.

For a given solenoid strength k0, referring to the unstripped
beam, the corresponding quadrupole gradients of the decou-

pling section are determined using a numerical routine, such

that finally the rms emittances are equal to the eigen-

emittances. If these optimized gradients are applied to re-

move interplane correlations produced by a different sole-

noid strength k1, the resulting rms emittances and eigen-

emittances at the exit of the decoupling section are calcu-

lated to be

"x;y ¼
"nðk1Þ

2

�

�nðk1Þ
�nðk0Þ

þ �nðk0Þ
�nðk1Þ

� 2ak1�nðk1Þ
�

(31)

and

"1;2 ¼ "nðk1Þ½1� ak1�nðk1Þ� (32)

with the parameter t:

t ¼ a4"2�2

ð"
�
þ�’2Þð"

�
þ a2k20"�þ �’2Þ

ðk21 � k20Þ2
4

: (33)

In the sameway the rmsTwiss parameters of a beam coupled

by k1 but decoupled by �Rðk0Þ are found from

Eq. (24) as

~�x ¼ ~�y ¼ 0; ~�x ¼ ~�y ¼ �nðk0Þ; (34)

showing that the rms Twiss parameters after decoupling

section do not depend on the coupling solenoid strength k1
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if the decoupling section was set assuming a coupling

strength k0.
The EMTEX beam line uses more elements than a single

skew triplet because of finite apertures and gradients of a

real experiment. Its decoupling section comprises a quad-

rupole triplet and a skew quadrupole triplet separated by a

drift. The quadrupole gradients are optimized numerically

from a numerical routine [13] to remove the interplane

correlations thus minimizing the horizontal (for instance)

rms emittances to the lower of the eigen-emittances.

Figure 2 illustrates the transverse emittance transfer and

the multiparticle beam dynamics simulations have been

done using the TRACK code [25]. The relevant parameters

of the simulations are summarized in Appendix B. In the

first step we assume that the and the skew quadrupole

triplet are turned off. This process is an ordinary stripping

process and the eigen-emittances are equal to the rms

emittances at the entrance and exit of this section. It

reflects today’s situation of providing highly charged ions

from linacs. Because of the stripping growth of eigen-

emittances and rms emittances is unavoidable. It is the

reference scenario to which the transverse rms emittance

transfer scenario is to be compared.

In the latter case, the solenoid and the skew quadrupoles

triplet are turnedon.Once the beamenters the entrance fringe

field of the solenoid, the eigen-emittances start to split gradu-

ally. After stripping, the exit fringe field of the solenoid is

passed by the beam with reduced beam rigidity, thus over-

compensating the previous eigen-emittance separation; the

eigen-emittances diverge inside the solenoid and are pre-

served afterwards. Along the decoupling skew quadrupole

triplet the rms emittances are made equal to the separated

eigen-emittances. Compared to the reference scenario, the

final horizontal rms emittance is reduced significantly.

Therefore, this emittance transfer experiment is there-

fore fundamentally different from an emittance exchange

experiment. Emittance transfer is nonsymplectic and the

amount of transfer can be controlled by the solenoid field

strength and the beam size on the stripping foil. Behind the

decoupling section another regular quadrupole triplet is

required to rematch the beam for further transport.

VI. DECOUPLING CAPABILITYANALYSIS

EMTEX will use a beam of molecules from

Dþ
6 with the initial beam parameters � ¼ 0, � ¼

2:5 mm=mrad, and " ¼ 0:51 mmmrad at the entrance of

the solenoid. The stripping scattering amount �’ is

0.226 mrad [19] and the decoupling transfer matrix is

determined for 1.0 T of solenoid field. The eigen-

emittances and rms emittances at the exit of the solenoid

calculated using Eq. (16) and those obtained from tracking

through three-dimensional field maps are compared in

Fig. 3. The beam is strongly coupled.

For the simplest decoupling transfer matrix, the decou-

pling section is composed of a skew quadrupole triplet,

explicitly from Eq. (22) (in units of mm and mrad):

�Rsimplest¼

þ0:500 þ0:891 �0:500 þ0:891

�0:281 þ0:500 �0:281 �0:500

�0:500 þ0:891 þ0:500 þ0:891

�0:281 �0:500 �0:281 þ0:500
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: (35)

FIG. 3. Eigen-emittances and rms emittances calculated by the

analytical method based on the short solenoid transfer matrix of

Eq. (16) and by multiparticle tracking through three-dimensional

field maps.

FIG. 2. Evolution of the rms emittances and eigen-emittances

along the EMTEX beam lines for two cases: in the first case

(reference, gray and black lines) the solenoid and the skew quadru-

poles are off, i.e., no nonsymplectic action nor coupling. Eigen-

emittances and rms emittances are always equal and they change

just during the stripping from angular scattering. In the second case

(red and blue lines) the solenoid field is 1.0 Tand its fringes cause

nonsymplectic actions that change the eigen-emittances. Eigen-

emittances and rms emittances separate and both are increased

during stripping. The skew quadrupoles are turned on as well and

remove the coupling previously produced inside of the solenoid.

Since skew quadrupoles are symplectic, they do not change the

eigen-emittances. After this decoupling the rms emittances are

equal to the nonsymplectically changed eigen-emittances.
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The EMTEX decoupling section comprises a quadrupole

triplet and a skew quadrupole triplet separated by a drift.

Therefore, its decoupling transfer matrix has a more com-

plex structure, explicitly (in units of mm and mrad)

�REMTEX¼

þ0:386 �0:548 �0:240 �0:647

þ1:304 �0:535 �0:111 �2:348

þ0:673 þ0:126 �0:161 þ1:301

þ0:389 þ0:805 �0:495 þ0:846
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; (36)

being different from the form of Eq. (22). The final eigen-

emittances and rms emittances at the exit of the skew

quadrupole triplet calculated using Eq. (22) and those

obtained from tracking through the EMTEX beam line

are compared in Fig. 4. For the simple decoupling section

the calculation is based on the transfer matrix method of

Eq. (22). For the EMTEX decoupling section multiparticle

tracking through the external three-dimensional field maps

(for the solenoid) and the external one-dimensional field

profile (for the quadrupole and skew quadrupole) were

adopted.

The remarkable result is that both decoupling matrices

work effectively for a wide range of longitudinal magnetic

field values, i.e., the beam is well decoupled for a wide

range of longitudinal magnetic fields around the field the

quadrupoles have been optimized for. Additionally, in both

cases the decoupling performance is independent from the

sign of k1 as suggested by Eq. (33) and weakly depended

on (k1-k0). We currently do not have a complete analytical

understanding of this weak dependence except for the

simple decoupling matrix Eq. (22). However, we still aim

for understanding why the dependence is so weak even for

the EMTEX decoupling beam line being more complex

with respect to (wrt) Eq. (22). To exclude that this is casual

for this one beam line, the beam line has been modified by

prolonging or shortening drifts and quadrupole field

lengths. For all modifications (all using a regular quadru-

pole triplet followed by a skew quadrupole triplet),

the same behavior of decoupling performance was

observed.

However, this behavior simplifies the decoupling signif-

icantly as readoption of gradients to the solenoid field can

be skipped within a reasonable range of solenoid fields. It

provides a single-knob tool to partition the horizontal and

vertical beam rms emittances. The behavior of t calculated
analytically by Eq. (22) and by tracking through EMTEX

is illustrated in Fig. 5, where the stripping scattering

amount �’ is 0.226 mrad and the longitudinal magnetic

field is varied. At EMTEX k0 corresponds to a solenoid

field of 1.0 T and accordingly t has a minimum for that

value. The beam is well decoupled for a wide range of

solenoid fields for both the analytical calculation and for

tracking through the EMTEX beam line.

The dependence of t on the solenoid field as obtained

from tracking has been fitted with a 4th order polynomial

as motivated by Eq. (33) and the fit is plotted as well in

Fig. 5. This result might suggest a general 4th order de-

pendence of the decoupling performance of any beam line

on the coupling-driving solenoid field. The analytical in-

vestigation of this suggestion is ongoing. During the ex-

perimental proof of eigen-emittance tayloring with

effective fringe fields by Piot et al. [5], the authors used

the beam size to control the amount of eigen-emittance

change. EMTEX will use the solenoid field strength in-

stead. Using the beam size, the decoupling gradients must

be readopted to the specific beam size.

FIG. 4. Eigen-emittances and rms emittances calculated by the

analytical method based on the decoupling matrix of Eq. (22)

and by multiparticle tracking through the EMTEX beam line.

Although the longitudinal magnetic field is varied, the decou-

pling gradients are kept constant at the values determined to

decouple the beam coupled by a longitudinal magnetic field of

1.0 T.

FIG. 5. The parameter t calculated analytically and by multi-

particle tracking simulation. Although the longitudinal magnetic

field is varied, the decoupling gradients are kept constant at the

values determined to decouple the beam coupled by a longitu-

dinal magnetic field of 1.0 T.
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Within the preparation of experimental investigation of

the decoupling at EMTEX, machine-related error studies

wrt quadrupole gradients and rolls were done. As shown in

[22], just rolls have a notable but negligible effect on the

decoupling.

VII. MATCHING CAPABILITYANALYSIS

Another convenient feature of EMTEX, which

can be explained for the generic case of decoupling accord-

ing to Eq. (22), seems to manifest as a general rule in

numerical matrix as well as in tracking calculations. Its

generality we cannot explain for the time being: the shape

of the transverse beta functions after the decoupling

section does not practically depend on the solenoid field

strength. In other words, the two transverse rms ellipses

after decoupling are just changed in size through the

solenoid field; their orientation and shape remains unaf-

fected by the solenoid strength. This matching capability of

EMTEX is illustrated in Figs. 6 and 7.

This feature has some analogy to an achromatic

section. Inside an achromat the dispersion functions D
and D0 are nonzero and the envelope shapes depend on

the amount of momentum spread. Behind an achromat D
and D0 are zero and envelopes do not depend (to first

order) any longer on the momentum spread. As mentioned

before, we do not fully understand yet this analogy and its

complete investigation shall be beyond the scope of this

paper.

VIII. CONCLUSION AND OUTLOOK

A beam line for demonstration of round-to-flat trans-

formation of an initially uncoupled ion beam was pre-

sented. It comprises two doublets for matching the

required beam parameters on a stripping foil being placed

in the center of a solenoid. The net effect on the beam is a

nonsymplectic transformation creating interplane cou-

FIG. 6. Horizontal and vertical beta functions of the beam

along the EMTEX beam line for different solenoid field

strengths. The gradients of all quadrupoles (regular and skew)

are constant. The shape of the horizontal and vertical beta

function does depend on the solenoid field strength just between

the solenoid entrance and the exit of the last skew quadrupole,

i.e., along the part of the beam line where interplane coupling is

nonzero. Behind the last skew quadrupole all coupling is re-

moved and from this position on the shape of the beta function is

invariant under solenoid field strength variation.

FIG. 7. The transverse emittance portraits at the exit of

the beam line for different solenoid field strengths. The gradients

of the quadrupoles and skew quadrupoles are constant. The

rmsTwiss parameters do not depend on the solenoid field strength.
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pling, being removed afterwards along a beam line from

one regular quadrupole triplet and one skew quadrupole

triplet. Angular scattering during stripping was included.

The beam line decoupling performance was found to be

very stable wrt the magnetic field strength of the solenoid,

i.e., the same decoupling gradients can be applied for a

wide range of solenoid fields without relevant reduction of

the decoupling performance. After the beam is decoupled

its rms Twiss parameters �x, �x, �y, �y do not practically

depend on the solenoid field strength that created the

coupling. Although the results were illustrated using spe-

cific beam parameters, they apply for any other set of beam

parameters transported through the proposed kind of beam

line. For the time being we can explain the result for a

generic case but not the generality of which it has been

observed.
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APPENDIX A: EIGEN-EMITTANCE FORMULA

Based on linear algebra basics, one has

detðA1A2Þ ¼ detðA1Þ detðA2Þ; (A1)

detðAT
1 Þ ¼ detðA1Þ; (A2)

trðA1A2A3Þ ¼ trðA3A1A2Þ ¼ trðA2A3A1Þ: (A3)

AssumingM is a symplectic transformation, and "1 and "2
are the eigen-emittances. We use

detð �CÞ ¼ detðMCMTÞ ¼ detðMÞ detðCÞ detðMTÞ (A4)

and

detðMÞ ¼ detðMTÞ ¼ 1 (A5)

to obtain

detðCÞ ¼ ð"1"2Þ2: (A6)

It is straightforward that

tr½ð �CJÞ2� ¼ trðMCMTJ �MCMTJÞ
¼ trðMC �MTJM � CMTJÞ
¼ trðMC � J � CMTJÞ
¼ trðMTJM � CJCÞ
¼ tr½ðJCÞ2� ¼ tr½ðCJÞ2� (A7)

and

tr½ðCJÞ2� ¼ tr½ð �CJÞ2� ¼ �2ð"21 þ "22Þ (A8)

resulting finally in

"1 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�tr½ðCJÞ2� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr2½ðCJÞ2� � 16 detðCÞ
q

r

; (A9)

"2 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�tr½ðCJÞ2� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tr2½ðCJÞ2� � 16 detðCÞ
q

r

: (A10)

APPENDIX B: BEAM LINE PARAMETERS

ADþ
6 beam of 11:4 MeV=u is stripped in a foil to a 3Dþ

2

beam. The total relative momentum spread is less than

�5� 10�4. The parameters of the beam line are listed in

Table I. Positive gradient means horizontal focusing and a

skew refers to a regular quadrupole rotated clockwise by

TABLE I. The lattice of the EMTEX beam line.

Element Effective length [mm] Gradient [T=m]

Drift 240.5

Quad 319 þ7:276

Drift 203

Quad 319 �7:726

Drift 4000

Quad 354 �0:187

Drift 167.5

Quad 354 þ3:287

Drift 500

Drift 300

Half sol 100 þ1:00 T

Foil 0 22 �g=cm2, �’ ¼ 0:226 mrad

Half sol 100 þ1:00 T

Drift 300

Drift 200

Quad 319 þ10:464

Drift 201

Quad 319 �9:431

Drift 201

Quad 319 þ8:421

Drift 500

Skew quad 200 þ5:110

Drift 20

Skew quad 400 �2:229

Drift 20

Skew quad 200 þ8:861

Drift 500

Quad 200 �7:016

Drift 20

Quad 400 þ7:429

Drift 20

Quad 200 �7:806

Drift 1289
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45� around the beam direction. The decoupling section

starts at the exit of the solenoid and ends behind the last

skew quadrupole. The beam parameters at the entrance and

exit of the beam line are listed in Table II.
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"x="y [mmmrad] 0:509=0:510 0:256=1:144
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