207 research outputs found

    Systematic study of X-ray Cavities in the brightest galaxy of the Draco Constellation NGC 6338

    Full text link
    We present results based on the systematic analysis of currently available Chandra archive data on the brightest galaxy in the Draco constellation NGC 6338, in order to investigate the properties of the X-ray cavities. In the central ~6 kpc, at least a two and possibly three, X-ray cavities are evident. All these cavities are roughly of ellipsoidal shapes and show a decrement in the surface brightness of several tens of percent. In addition to these cavities, a set of X-ray bright filaments are also noticed which are spatially coincident with the H{\alpha} filaments over an extent of 15 kpc. The H{\alpha} emission line filaments are perpendicular to the X- ray cavities. Spectroscopic analysis of the hot gas in the filaments and cavities reveal that the X-ray filaments are cooler than the gas contained in the cavities. The emission line ratios and the extended, asymmetric nature of the H{\alpha} emission line filaments seen in this system require a harder ionizing source than that produced by star formation and/or young, massive stars. Radio emission maps derived from the analysis of 1.4 GHz VLA FIRST survey data failed to show any association of these X-ray cavities with radio jets, however, the cavities are filled by radio emission. The total power of the cavities is 17\times 1042 erg s-1 and the ratio of the radio luminosity to cavity power is ~ 10-4, implying that most of the jet power is mechanical.Comment: The paper contains 12 figures and 3 tables, Accepted 2011 December 7 for publication in MNRA

    X-ray Spectroscopy of the Core of the Perseus Cluster with Suzaku: Elemental Abundances in the Intracluster Medium

    Full text link
    The results from Suzaku observations of the central region of the Perseus cluster are presented. Deep exposures with the X-ray Imaging Spectrometer provide high quality X-ray spectra from the intracluster medium. X-ray lines from helium-like Cr and Mn have been detected significantly for the first time in clusters. In addition, elemental abundances of Ne, Mg, Si, S, Ar, Ca, Fe, and Ni are accurately measured within 10' (or 220 kpc) from the cluster center. The relative abundance ratios are found to be within a range of 0.8-1.5 times the solar value. These abundance ratios are compared with previous measurements, those in extremely metal-poor stars in the Galaxy, and theoretical models.Comment: 10 pages, 3 figures, accepted for ApJ

    The variable quiescence of Cen X-4

    Full text link
    Cen X-4 is one of the best studied low-mass neutron star transients in quiescence. Thanks to XMM-Newton large throughput, Cen X-4 was observed at the highest signal to noise ever. This allowed us to disclose rapid (>100 s), large (45+/-7 rms in the 10^{-4}-1 Hz range) intensity variability, especially at low energies. In order to highlight the cause of this variability, we divided the data into intensity intervals and fit the resulting spectra with the canonical model for neutron star transients in quiescence, i.e. an absorbed power law plus a neutron star atmosphere. The fit is consistent with a variable column density plus variability in (at least) one of the spectral models. Variations in the neutron star atmosphere might suggest that accretion onto the neutron star surface is occuring in quiescence; variations in the power law tail should support the view of an active millisecond radio pulsar emitting X-rays at the shock between a radio pulsar wind and inflowing matter from the companion star.Comment: 5 pages, 2 tables, 4 figures, accepted for publication on Ap

    Implications of the central metal abundance peak in cooling core clusters of galaxies

    Full text link
    Recent XMM-Newton observations of clusters of galaxies have provided detailed information on the distribution of heavy elements in the central regions of clusters with cooling cores providing strong evidence that most of these metals come from recent SN type Ia. In this paper we compile information on the cumulative mass profiles of iron, the most important metallicity tracer. We find that long enrichment times (larger than 5 Gyr) are necessary to produce the central abundance peaks. Classical cooling flows, a strongly convective intracluster medium, and a complete metal mixing by cluster mergers would destroy the observed abundance peaks too rapidly. Thus the observations set strong constraints on cluster evolution models requiring that the cooling cores in clusters are preserved over very long times. We further conclude from the observations that the innermost part of the intracluster medium is most probably dominated by gas originating predominantly from stellar mass loss of the cD galaxy.Comment: 5 pages, 4 figures, A&A in press. Astronomy and Astrophysics Letters, in pres

    An X-ray review of MS1054-0321: hot or not?

    Full text link
    XMM-Newton observations are presented for the z=0.83 cluster of galaxies MS1054-0321, the highest redshift cluster in the Einstein Extended Medium Sensitivity Survey (EMSS). The temperature inferred by the XMM-Newton data, T=7.2 (+0.7, -0.6) keV, is much lower than the temperature previously reported from ASCA data, T=12.3 (+3.1, -2.2) keV (Donahue et al. 1998), and a little lower than the Chandra temperature, T=10.4(+1.7, -1.5) keV, determined by Jeltema et al. 2001. The discrepancy between the newly derived temperature and the previously derived temperatures is discussed in detail. If one allows the column density to be a free parameter, then the best fit temperature becomes T=8.6 (+1.2, -1.1) keV, and the best fit column density becomes N_(H)=1.33 (+0.15 -0.14) x 10^20 atoms/cm^2. The iron line is well detected in the XMM-Newton spectrum with a value for the abundance of Z=0.33 (+0.19 -0.18) Zsol, in very good agreement with previous determinations. The derived XMM X-ray luminosity for the overall cluster in the 2-10 keV energy band is L_X=(3.81 +/- 0.19) x 10^44 h^-2 erg s^-1 while the bolometric luminosity is L_BOL=(8.05+/-0.40) x 10^44 h^-2 erg s^-1. The XMM-Newton data confirm the substructure in the cluster X-ray morphology already seen by ROSAT and in much more detail by Chandra. The central weak lensing clump is coincident with the main cluster component and has a temperature T=8.1 (+1.3, -1.2) keV. The western weak lensing clump coincides with the western X-ray component which is much cooler with a temperature T=5.6 (+0.8, -0.6)$ keV. Given the newly determined temperature, MS1054-0321 is no longer amongst the hottest clusters known.Comment: To appear in the A&A main Journal, 13 pages including 3 postscript figures and 4 tables. Figs. 1, 4, 5 and 7 are too large and are not given here. The whole paper as pdf file is posted at http://www.ira.cnr.it/~gioia/PUB/publications.htm

    Discovering the most elusive radio relic in the sky: Diffuse shock acceleration caught in the act?

    Get PDF
    The origin of radio relics is usually explained via diffusive shock acceleration (DSA) or re-acceleration of electrons at/from merger shocks in galaxy clusters. The case of acceleration is challenged by the low predicted efficiency of low Mach number merger shocks, unable to explain the power observed in most radio relics. In this letter, we present the discovery of a new giant radio relic around the galaxy cluster Abell 2249 (zz = 0.0838) using Low-Frequency Array (LOFAR). It is special since it has the lowest surface brightness of all known radio relics. We study its radio and X-ray properties combining LOFAR data with uGMRT, JVLA, and XMM. This object has a total power of L−1.4rm,GHz=4.1pm0.8times1023L-{1.4rm, GHz}=4.1pm 0.8 times 10{23} W Hz-1 and integrated spectral index α = 1.15 ± 0.23. We infer for this radio relic a lower bound on the magnetization of Bge0.4,muBge 0.4, muG, a shock Mach number of mathcalMapprox3.79mathcal {M}approx 3.79, and a low acceleration efficiency consistent with DSA. This result suggests that a missing population of relics may become visible, thanks to the unprecedented sensitivity of the new generation of radio telescopes

    The late Miocene-early Pliocene biogenic bloom: an integrated study in the Tasman sea

    Get PDF
    The Late Miocene-Early Pliocene Biogenic Bloom (∌9–3.5 Ma) was a paleoceanographic phenomenon defined by anomalously high accumulations of biological components at multiple open ocean sites, especially in certain regions of the Indian, and Pacific oceans. Its temporal and spatial extent with available information leaves fundamental questions about driving forces and responses unanswered. In this work, we focus on the middle part of the Biogenic Bloom (7.4–4.5 Ma) at International Ocean Discovery Program Site U1506 in the Tasman Sea, where we provide an integrated age model based on orbital tuning of the Natural Gamma Radiation, benthic foraminiferal oxygen isotopes, and calcareous nannofossil biostratigraphy. Benthic foraminiferal assemblages suggest changes in deep water oxygen concentration and seafloor nutrient supply during generally high export productivity conditions. From 7.4 to 6.7 Ma, seafloor conditions were characterized by episodic nutrient supply, perhaps related to seasonal phytoplankton blooms. From 6.7 to 4.5 Ma, the regime shifted to a more stable interval characterized by eutrophic and dysoxic conditions. Combined with seismic data, a regional change in paleoceanography is inferred at around 6.7 Ma, from stronger and well-oxygenated bottom currents to weaker, oxygen-depleted bottom currents. Our results support the hypothesis that the Biogenic Bloom was a complex, multiphase phenomenon driven by changes in ocean currents, rather than a single uniform period of sustained sea surface water productivity. Highly resolved studies are thus fundamental to its understanding and the disentanglement of local, regional, and global imprints

    A variable absorption feature in the X-ray spectrum of a magnetar

    Get PDF
    Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of AXPs and SGRs are greater than - or at the high end of the range of - those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2E14 gauss to more than 1E15 gauss.Comment: Nature, 500, 312 (including Supplementary Information

    Prediction and understanding of soft proton contamination in XMM-Newton: a machine learning approach

    Get PDF
    One of the major and unfortunately unforeseen sources of background for the current generation of X-ray telescopes are few tens to hundreds of keV (soft) protons concentrated by the mirrors. One such telescope is the European Space Agency's (ESA) X-ray Multi-Mirror Mission (XMM-Newton). Its observing time lost due to background contamination is about 40\%. This loss of observing time affects all the major broad science goals of this observatory, ranging from cosmology to astrophysics of neutron stars and black holes. The soft proton background could dramatically impact future large X-ray missions such as the ESA planned Athena mission (http://www.the-athena-x-ray-observatory.eu/). Physical processes that trigger this background are still poorly understood. We use a Machine Learning (ML) approach to delineate related important parameters and to develop a model to predict the background contamination using 12 years of XMM observations. As predictors we use the location of satellite, solar and geomagnetic activity parameters. We revealed that the contamination is most strongly related to the distance in southern direction, ZZ, (XMM observations were in the southern hemisphere), the solar wind radial velocity and the location on the magnetospheric magnetic field lines. We derived simple empirical models for the first two individual predictors and an ML model which utilizes an ensemble of the predictors (Extra Trees Regressor) and gives better performance. Based on our analysis, future missions should minimize observations during times associated with high solar wind speed and avoid closed magnetic field lines, especially at the dusk flank region in the southern hemisphere.Comment: 20 pages, 11 figure

    The LOFAR and JVLA view of the distant steep spectrum radio halo in MACS J1149.5+2223

    Get PDF
    Radio halos and relics are Mpc-scale diffuse radio sources in galaxy clusters, with a steep spectral index α>1\alpha>1 (S∝Μ−αS\propto \nu^{-\alpha}). It has been proposed that they arise from particle acceleration induced by turbulence and weak shocks, injected in the intracluster medium (ICM) during mergers. MACS J1149.5+2223 (MACS J1149) is a high redshift (z=0.544z=0.544) galaxy cluster possibly hosting a radio halo and a relic. We analysed LOFAR, GMRT, and JVLA radio data at 144, 323, 1500 MHz, and Chandra X-ray data to characterise the thermal and non-thermal properties of the cluster. We obtained radio images at different frequencies to investigate the spectral properties of the radio halo. We used Chandra X-ray images to constrain the thermal properties of the cluster. We measured a steep spectrum of the halo, with α=1.49±0.12\alpha=1.49\pm 0.12 between 144 and 1500 MHz. The radio surface brightness distribution across the halo is found to correlate with the X-ray brightness of the ICM, with a sub-linear slope in the range 0.4 to 0.6. We also report two possible cold fronts in north-east and north-west, but deeper X-ray observations are required to firmly constrain the properties of the upstream emission. We show that the combination of high redshift, steep radio spectrum, and sub-linear radio-X scaling of the halo rules out hadronic models. An old (∌1\sim 1 Gyr ago) major merger likely induced the formation of the halo through stochastic re-acceleration of relativistic electrons. We suggest that the two possible X-ray discontinuities may actually be part of the same cold front. In this case, the coolest gas pushed towards the north-west might be associated with the cool core of a sub-cluster involved in the major merger. The peculiar orientation of the south-east relic might indicate a different nature of this source and requires further investigation.Comment: 15 pages, accepted for publication in A&
    • 

    corecore