Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly
rotating, isolated neutron stars that sporadically undergo episodes of
long-term flux enhancement (outbursts) generally accompanied by the emission of
short bursts of hard X-rays. This behaviour can be understood in the magnetar
model, according to which these sources are mainly powered by their own
magnetic energy. This is supported by the fact that the magnetic fields
inferred from several observed properties of AXPs and SGRs are greater than -
or at the high end of the range of - those of radio pulsars. In the peculiar
case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing
parameters, whereas a strong field has been proposed to reside in the stellar
interior and in multipole components on the surface. Here we show that the
X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which
depend strongly on the star's rotational phase. This line is interpreted as a
proton cyclotron feature and its energy implies a magnetic field ranging from
2E14 gauss to more than 1E15 gauss.Comment: Nature, 500, 312 (including Supplementary Information