215 research outputs found

    Imaging Oxygen Defects and their Motion at a Manganite Surface

    Full text link
    Manganites are technologically important materials, used widely as solid oxide fuel cell cathodes: they have also been shown to exhibit electroresistance. Oxygen bulk diffusion and surface exchange processes are critical for catalytic action, and numerous studies of manganites have linked electroresistance to electrochemical oxygen migration. Direct imaging of individual oxygen defects is needed to underpin understanding of these important processes. It is not currently possible to collect the required images in the bulk, but scanning tunnelling microscopy could provide such data for surfaces. Here we show the first atomic resolution images of oxygen defects at a manganite surface. Our experiments also reveal defect dynamics, including oxygen adatom migration, vacancy-adatom recombination and adatom bistability. Beyond providing an experimental basis for testing models describing the microscopics of oxygen migration at transition metal oxide interfaces, our work resolves the long-standing puzzle of why scanning tunnelling microscopy is more challenging for layered manganites than for cuprates.Comment: 7 figure

    Chemically induced Jahn–Teller ordering on manganite surfaces

    Get PDF
    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields and establish their coupling to electronic properties. Here we demonstrate that measuring the sub-30-pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunnelling microscopy allows the physical order parameter fields to be visualized in real space on the single-atom level. Here, this local crystallographic analysis is applied to the in-situ-grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistryinduced stabilization of ordered Jahn–Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level

    Solid Loss of Carrots During Simulated Gastric Digestion

    Get PDF
    The knowledge of solid loss kinetics of foods during digestion is crucial for understanding the factors that constrain the release of nutrients from the food matrix and their fate of digestion. The objective of this study was to investigate the solid loss of carrots during simulated gastric digestion as affected by pH, temperature, viscosity of gastric fluids, mechanical force present in stomach, and cooking. Cylindrical carrot samples were tested by static soaking method and using a model stomach system. The weight retention, moisture, and loss of dry mass were determined. The results indicated that acid hydrolysis is critical for an efficient mass transfer and carrot digestion. Internal resistance rather than external resistance is dominant in the transfer of soluble solids from carrot to gastric fluid. Increase in viscosity of gastric fluid by adding 0.5% gum (w/w) significantly increased the external resistance and decreased mass transfer rate of carrots in static soaking. When mechanical force was not present, 61% of the solids in the raw carrot samples were released into gastric fluid after 4 h of static soaking in simulated gastric juice. Mechanical force significantly increased solid loss by causing surface erosion. Boiling increased the disintegration of carrot during digestion that may favor the loss of solids meanwhile reducing the amount of solids available for loss in gastric juice. Weibull function was successfully used to describe the solid loss of carrot during simulated digestion. The effective diffusion coefficients of solids were calculated using the Fick’s second law of diffusion for an infinite cylinder, which are between 0.75 × 10−11 and 8.72 × 10−11 m2/s, depending on the pH of the gastric fluid

    Atomic-scale visualization of initial growth of homoepitaxial SrTiO3 thin film on an atomically ordered substrate

    Full text link
    The initial homoepitaxial growth of SrTiO3 on a (\surd13\times\surd13) - R33.7{\deg}SrTiO3(001) substrate surface, which can be prepared under oxide growth conditions, is atomically resolved by scanning tunneling microscopy. The identical (\surd13\times\surd13) atomic structure is clearly visualized on the deposited SrTiO3 film surface as well as on the substrate. This result indicates the transfer of the topmost Ti-rich (\surd13\times\surd13) structure to the film surface and atomic-scale coherent epitaxy at the film/substrate interface. Such atomically ordered SrTiO3 substrates can be applied to the fabrication of atom-by-atom controlled oxide epitaxial films and heterostructures

    Novel Membrane Emulsification Method of Producing Highly Uniform Silica Particles Using Inexpensive Silica Sources

    Get PDF
    A membrane emulsification method for production of monodispersed silica-based ion exchange particles through water-in-oil emulsion route is developed. A hydrophobic microsieve membrane with 15 mu m pore size and 200 pm pore spacing was used to produce droplets, with a mean size between 65 and 240 pm containing acidified sodium silicate solution (with 4 and 6 wt% SiO2) in kerosene. After drying, the final silica particles had a mean size in the range between 30 and 70 mu m. Coefficient of variation for both the droplets and particles did not exceed 35%. The most uniform particles had a mean diameter of 40 mu m and coefficient of variation of 17%. The particles were functionalised with 3-aminopropyltrimethoxysilane and used for chemisorption of Cu(II) from an aqueous solution of CuSO4 in a continuous flow stirred cell with slotted pore microfiltration membrane. Functionalised silica particles showed a higher binding affinity toward Cu(II) than nontreated silica particles.UK Colloids 2011 - International Colloid and Surface Science Symposium, Jul 04-06, 2011, London, Englan

    Minimum Free Energy Path of Ligand-Induced Transition in Adenylate Kinase

    Get PDF
    Large-scale conformational changes in proteins involve barrier-crossing transitions on the complex free energy surfaces of high-dimensional space. Such rare events cannot be efficiently captured by conventional molecular dynamics simulations. Here we show that, by combining the on-the-fly string method and the multi-state Bennett acceptance ratio (MBAR) method, the free energy profile of a conformational transition pathway in Escherichia coli adenylate kinase can be characterized in a high-dimensional space. The minimum free energy paths of the conformational transitions in adenylate kinase were explored by the on-the-fly string method in 20-dimensional space spanned by the 20 largest-amplitude principal modes, and the free energy and various kinds of average physical quantities along the pathways were successfully evaluated by the MBAR method. The influence of ligand binding on the pathways was characterized in terms of rigid-body motions of the lid-shaped ATP-binding domain (LID) and the AMP-binding (AMPbd) domains. It was found that the LID domain was able to partially close without the ligand, while the closure of the AMPbd domain required the ligand binding. The transition state ensemble of the ligand bound form was identified as those structures characterized by highly specific binding of the ligand to the AMPbd domain, and was validated by unrestrained MD simulations. It was also found that complete closure of the LID domain required the dehydration of solvents around the P-loop. These findings suggest that the interplay of the two different types of domain motion is an essential feature in the conformational transition of the enzyme

    Electrophysiological correlates of selective attention: A lifespan comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study how event-related brain potentials (ERPs) and underlying cortical mechanisms of selective attention change from childhood to old age, we investigated lifespan age differences in ERPs during an auditory oddball task in four age groups including 24 younger children (9–10 years), 28 older children (11–12 years), 31 younger adults (18–25), and 28 older adults (63–74 years). In the Unattend condition, participants were asked to simply listen to the tones. In the Attend condition, participants were asked to count the deviant stimuli. Five primary ERP components (N1, P2, N2, P3 and N3) were extracted for deviant stimuli under Attend conditions for lifespan comparison. Furthermore, Mismatch Negativity (MMN) and Late Discriminative Negativity (LDN) were computed as difference waves between deviant and standard tones, whereas Early and Late Processing Negativity (EPN and LPN) were calculated as difference waves between tones processed under Attend and Unattend conditions. These four secondary ERP-derived measures were taken as indicators for change detection (MMN and LDN) and selective attention (EPN and LPN), respectively. To examine lifespan age differences, the derived difference-wave components for attended (MMN and LDN) and deviant (EPN and LPN) stimuli were specifically compared across the four age groups.</p> <p>Results</p> <p>Both primary and secondary ERP components showed age-related differences in peak amplitude, peak latency, and topological distribution. The P2 amplitude was higher in adults compared to children, whereas N2 showed the opposite effect. P3 peak amplitude was higher in older children and younger adults than in older adults. The amplitudes of N3, LDN, and LPN were higher in older children compared with both of the adult groups. In addition, both P3 and N3 peak latencies were significantly longer in older than in younger adults. Interestingly, in the young adult sample P3 peak amplitude correlated positively and P3 peak latency correlated negatively with performance in the Identical Picture test, a marker measure of fluid intelligence.</p> <p>Conclusion</p> <p>The present findings suggest that patterns of event-related brain potentials are highly malleable within individuals and undergo profound reorganization from childhood to adulthood and old age.</p

    Limpet Shells from the Aterian Level 8 of El Harhoura 2 Cave (Témara, Morocco): Preservation State of Crossed-Foliated Layers

    Get PDF
    International audienceThe exploitation of mollusks by the first anatomically modern humans is a central question for archaeologists. This paper focuses on level 8 (dated around * 100 ka BP) of El Har-houra 2 Cave, located along the coastline in the Rabat-Témara region (Morocco). The large quantity of Patella sp. shells found in this level highlights questions regarding their origin and preservation. This study presents an estimation of the preservation status of these shells. We focus here on the diagenetic evolution of both the microstructural patterns and organic components of crossed-foliated shell layers, in order to assess the viability of further investigations based on shell layer minor elements, isotopic or biochemical compositions. The results show that the shells seem to be well conserved, with microstructural patterns preserved down to sub-micrometric scales, and that some organic components are still present in situ. But faint taphonomic degradations affecting both mineral and organic components are nonetheless evidenced, such as the disappearance of organic envelopes surrounding crossed-foliated lamellae, combined with a partial recrystallization of the lamellae. Our results provide a solid case-study of the early stages of the diagenetic evolution of crossed-foliated shell layers. Moreover, they highlight the fact that extreme caution must be taken before using fossil shells for palaeoenvironmental or geochronological reconstructions. Without thorough investigation, the alteration patterns illustrated here would easily have gone unnoticed. However, these degradations are liable to bias any proxy based on the elemental, isotopic or biochemical composition of the shells. This study also provides significant data concerning human subsistence behavior: the presence of notches and the good preservation state of limpet shells (no dissolution/recrystallization, no bioerosion and no abrasion/fragmentation aspects) would attest that limpets were gathered alive with tools by Middle Palaeolithic (Aterian) populations in North Africa for consumption

    Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits

    Get PDF
    Prion diseases are fatal neurodegenerative diseases characterised by deposition of amyloid plaques containing abnormal prion protein aggregates (PrPSc). This study aimed to evaluate the potential of radioiodinated flavonoid derivatives for single photon emission computed tomography (SPECT) imaging of PrPSc. In vitro binding assays using recombinant mouse PrP (rMoPrP) aggregates revealed that the 4-dimethylamino-substituted styrylchromone derivative (SC-NMe2) had higher in vitro binding affinity (Kd = 24.5 nM) and capacity (Bmax = 36.3 pmol/nmol protein) than three other flavonoid derivatives (flavone, chalcone, and aurone). Fluorescent imaging using brain sections from mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice demonstrated that SC-NMe2 clearly labelled PrPSc-positive prion deposits in the mice brain. Two methoxy SC derivatives, SC-OMe and SC-(OMe)2, also showed high binding affinity for rMoPrP aggregates with Ki values of 20.8 and 26.6 nM, respectively. In vitro fluorescence and autoradiography experiments demonstrated high accumulation of [125I]SC-OMe and [125I]SC-(OMe)2 in prion deposit-rich regions of the mBSE-infected mouse brain. SPECT/computed tomography (CT) imaging and ex vivo autoradiography demonstrated that [123I]SC-OMe showed consistent brain distribution with the presence of PrPSc deposits in the mBSE-infected mice brain. In conclusion, [123I]SC-OMe appears a promising SPECT radioligand for monitoring prion deposit levels in the living brain

    An investigation in the correlation between Ayurvedic body-constitution and food-taste preference

    Get PDF
    corecore