Manganites are technologically important materials, used widely as solid
oxide fuel cell cathodes: they have also been shown to exhibit
electroresistance. Oxygen bulk diffusion and surface exchange processes are
critical for catalytic action, and numerous studies of manganites have linked
electroresistance to electrochemical oxygen migration. Direct imaging of
individual oxygen defects is needed to underpin understanding of these
important processes. It is not currently possible to collect the required
images in the bulk, but scanning tunnelling microscopy could provide such data
for surfaces. Here we show the first atomic resolution images of oxygen defects
at a manganite surface. Our experiments also reveal defect dynamics, including
oxygen adatom migration, vacancy-adatom recombination and adatom bistability.
Beyond providing an experimental basis for testing models describing the
microscopics of oxygen migration at transition metal oxide interfaces, our work
resolves the long-standing puzzle of why scanning tunnelling microscopy is more
challenging for layered manganites than for cuprates.Comment: 7 figure