43 research outputs found

    Inhibitive effect of sodium (E)-4-(4-nitrobenzylidenamino) benzoate on the corrosion of some metals in sodium chloride solution

    Get PDF
    The inhibition performance of a novel anionic carboxylic Schiff base, sodium (E)-4-(4-nitrobenzylideneamino)benzoate (SNBB), was investigated for various metals, namely low carbon steel F111, pure iron and copper, in neutral 10 mM NaCl solution. Potentiodynamic polarization, scanning vibrating electrode technique (SVET), quantum chemical (QC) calculation, and molecular dynamics (MD) simulation were employed. The potentiodynamic polarization data showed that SNBB acts as an effective corrosion inhibitor for both iron and F111 steel, but it is not effective for the copper. In situ spatially-resolved SVET maps evidenced a major change in surface reactivity for Fe and F111 steel immersed in 10 mM aqueous solution in the absence and in the presence of SNBB. Featureless ionic current density distributions were recorded in the presence of SNBB at both their spontaneous open circuit potential (OCP) and under mild anodic polarization conditions, while major ionic flows were monitored above the metals in the absence of SNBB. On the basis of computer simulations, it is proposed that SNBB produces a stable chelate film on iron and steel surfaces that accounts for the good corrosion inhibition efficiency observed. The different inhibition efficiencies of SNBB molecules on the iron and copper was attributed to the special chemical structure of SNBB molecule and its different chelation ability with the released metal ions on the metal surface. The QC calculations also confirmed the high corrosion inhibition efficiency of SNBB. The MD simulation indicated higher binding energy of SNBB on iron surface compared to that of copper surface. The interaction mode of SNBB on iron and F111 steel surfaces corresponds to a mixed chemical and physical adsorption, and it obeys the Langmuir isother

    narrating traditional iranian carpet merchants

    Get PDF
    Iranian carpet merchants developed a collective identitary narrative to enhance their capital creation in the social field of the German market, the field of Iranian foreign trade, and transnational bazari networks. This chapter goes beyond the practicalities of juggling resources across social fields: it explains the motivation behind this agency. Building on David Graeber's anthropology of value, as well as on studies about identity marketing and ethnic entrepreneurship, I show how the merchants' resources were evaluated between the 1950s and today to explain by which systems of value these social fields were shaped. From the confrontation between changing systems of value emerges Iranian carpet merchants' potential to increase the efficiency of their capital creation by—collectively—trying to redefine the meaning of their resources

    Synthesis, X-ray crystal structure, and electrochemistry of copper(II) complexes of a new tridentate unsymmetrical Schiff base ligand and its hydrolytically rearranged isomer

    No full text
    A new unsymmetrical Schiff base ligand HL1, HBacabza, and its copper(II) complexes [Cu2L21(OAc)(2)] (1) and [Cu2L22(N-3)(2)]center dot 2H(2)O (2) with HBacabza = 3-(2- aminobenzylimino)-1-phenylbutan-1-one as HL1 and its hydrolytically rearranged isomer 3-(2-aminomethylphenyleneimino)-1-phenylbutan-1-one as HL2, have been synthesized and characterized by elemental analyses and spectroscopic methods. The rearrangement of HL1 to HL2 occurs in a hydrolysis-recondensation process in the reaction of HL1 with Cu(ClO4)(2)center dot 6H(2)O and NaN3. The crystal structures of the ligand and its complexes have been determined by single crystal X-ray diffraction. The deprotonated Bacabza coordinates to the metal center as a tridentate ligand. The acetate anion coordinates through one oxygen atom in complex 1 leading to a mono-atomic acetate oxygen-bridging dimeric copper(II) complex. Similarly, the azide anion coordinates through one nitrogen atom in complex 2 leading to a mono-atomic azide nitrogen-bridging dimeric copper(II) complex. The copper(II) ions adopt a distorted square pyramidal (4 + 1) coordination in these two complexes. The cyclic voltammetric studies of these complexes in N, N-dimethylformamide indicate that the reduction process corresponding to Cu-II/Cu-I is electrochemically irreversible in complex 1, presumably due to the structural changes during the course of redox reaction, and quasi-reversible in complex 2

    Mucormycosis in Iran: A six-year retrospective experience

    No full text
    Mucormycosis is a devastating infection caused by Mucoralean fungi (Mucormycotina, Mucorales). Data concerning the global epidemiology of mucormycosis are scarce and little is known about the characteristics of mucormycosis in Iran. In this study, we aimed to understand the distribution of this infection in Iran retrospectively and to ascertain whether the patterns of infection are associated with specific host factors or not. A total of 208 cases were included in this study occurring during 2008–2014 and were validated according to (EORTC/MSG) criteria. A rising trend as significant increase from 9.7% in 2008 to 23.7% in 2014 was observed. The majority of patients were female (51.4%) with median age of 50 and the infections were seen mostly in autumn season (39.4%). Diabetes mellitus (75.4%) was the most common underlying condition and sinus involvement (86%) was the mostly affected site of infection. Amphotericin B (AmB) was the drug of choice for the majority of cases. Sixty four isolates did not show any growth in the lab and only 21 cases were evaluated by ITS sequencing, among them; Rhizopus arrhizus var. arrhizus was the dominant species. Considering the high mortality rate of mucormycosis, early and accurate diagnosis, with the aid of molecular methods may provide accurate treatments and improve the survival rate. Therefore, increased monitoring and awareness of this life-threatening disease is critical. © 2018 Elsevier Masson SA

    Mucormycosis in Iran: A six-year retrospective experience

    No full text
    Mucormycosis is a devastating infection caused by Mucoralean fungi (Mucormycotina, Mucorales). Data concerning the global epidemiology of mucormycosis are scarce and little is known about the characteristics of mucormycosis in Iran. In this study, we aimed to understand the distribution of this infection in Iran retrospectively and to ascertain whether the patterns of infection are associated with specific host factors or not. A total of 208 cases were included in this study occurring during 2008–2014 and were validated according to (EORTC/MSG) criteria. A rising trend as significant increase from 9.7% in 2008 to 23.7% in 2014 was observed. The majority of patients were female (51.4%) with median age of 50 and the infections were seen mostly in autumn season (39.4%). Diabetes mellitus (75.4%) was the most common underlying condition and sinus involvement (86%) was the mostly affected site of infection. Amphotericin B (AmB) was the drug of choice for the majority of cases. Sixty four isolates did not show any growth in the lab and only 21 cases were evaluated by ITS sequencing, among them; Rhizopus arrhizus var. arrhizus was the dominant species. Considering the high mortality rate of mucormycosis, early and accurate diagnosis, with the aid of molecular methods may provide accurate treatments and improve the survival rate. Therefore, increased monitoring and awareness of this life-threatening disease is critica
    corecore