111 research outputs found

    Utilization Of Goose Muscle In The Preparation Of Meat Rolls

    Get PDF
    South Dakota produces more domestic geese than any other state in the United States. Marketing of geese is decreasing due to importation of Canadian geese and a decreasing consumer demand. Research is needed to increase goose meat consumption. A large percentage of turkey meat is sold as retail convenience products such as rolls, yet there are virtually no comparable products on the market from goose meat. This study was undertaken to develop and evaluate an acceptable goose roll

    Human Rickettsial Pathogen Modulates Arthropod Organic Anion Transporting Polypeptide and Tryptophan Pathway for Its Survival in Ticks

    Get PDF
    The black-legged tick Ixodes scapularis transmits the human anaplasmosis agent, Anaplasma phagocytophilum. In this study, we show that A. phagocytophilum specifically up-regulates I. scapularis organic anion transporting polypeptide, isoatp4056 and kynurenine amino transferase (kat), a gene involved in the production of tryptophan metabolite xanthurenic acid (XA), for its survival in ticks. RNAi analysis revealed that knockdown of isoatp4056 expression had no effect on A. phagocytophilum acquisition from the murine host but affected the bacterial survival in tick cells. Knockdown of the expression of kat mRNA alone or in combination with isoatp4056 mRNA significantly affected A. phagocytophilum survival and isoatp4056 expression in tick cells. Exogenous addition of XA induces isoatp4056 expression and A. phagocytophilum burden in both tick salivary glands and tick cells. Electrophoretic mobility shift assays provide further evidence that A. phagocytophilum and XA influences isoatp4056 expression. Collectively, this study provides important novel information in understanding the interplay between molecular pathways manipulated by a rickettsial pathogen to survive in its arthropod vector

    Digital scoring of welfare traits in Atlantic salmon (Salmo salar L.) - a proof of concept study quantifying dorsal fin haemorrhaging via hyperspectral imaging

    Get PDF
    IntroductionMorphological injuries are well-established Operational Welfare Indicators (OWIs) for farmed animals including fish. They are often scored manually by human observers and this process can be laborious and prone to subjectivity and error. In this study we evaluated the use of a hyperspectral imaging system to quantify the presence and severity of external haemorrhaging in Atlantic salmon focusing on dorsal fins as a proof of concept OWI.MethodsTwo inexperienced observers manually audited dorsal fin injuries on 234 post-smolt Atlantic salmon following a standardized protocol that scored fin erosion on a 0-3 scale and also classified the injury as active/healed. The same fish were then imaged with a hyperspectral camera system and the manually scored visual assessments were compared with hyperspectral images of the same fin. Hyperspectral images were processed to segment out the dorsal fin of each fish and the presence of blood in the tissue was quantified by analysing the spectral information, yielding a fin haemorrhaging index.ResultsThe hyperspectral imaging platform was robust at detecting blood in fins and could help classify active injuries more accurately than human observers. The agreement between human scorers and the image analysis tool for classifying active bleeding vs healed/undamaged fins was good with a Cohen’s kappa of 0.81 and 0.90. Accuracy between the fin haemorrhaging index and the human observers was moderate (0.61 and 0.57) and on par with the agreement between the two human observers (0.68), demonstrating the difficulty in classifying injuries that result in a reduction in fin size but may or may not result in fin haemorrhaging.DiscussionThese results demonstrate the potential power of hyperspectral imaging to improve welfare audits in aquaculture, especially where manual injury classification schemes have potentially mixed traits that involve haemorrhaging. The data also suggests that the hyperspectral camera can detect bleeding that is not readily visible to the human eye. There is a need for further testing and validation to integrate these tools into existing welfare auditing programs, but the potential advantages of the automated approach include increased sensitivity, accuracy and throughput, while producing quantitative data for researchers or management

    Waveforms and Sonic Boom Perception and Response (WSPR): Low-Boom Community Response Program Pilot Test Design, Execution, and Analysis

    Get PDF
    The Waveforms and Sonic boom Perception and Response (WSPR) Program was designed to test and demonstrate the applicability and effectiveness of techniques to gather data relating human subjective response to multiple low-amplitude sonic booms. It was in essence a practice session for future wider scale testing on naive communities, using a purpose built low-boom demonstrator aircraft. The low-boom community response pilot experiment was conducted in California in November 2011. The WSPR team acquired sufficient data to assess and evaluate the effectiveness of the various physical and psychological data gathering techniques and analysis methods

    There is inadequate evidence to support the division of the genus Borrelia

    Get PDF
    There are surely scientific, genetic or ecological 60 arguments which show that differences exist between the relapsing fever (RF) spirochaetes and the Lyme borreliosis (LB) group of spirochaetes, both of which belong to the genus Borrelia. In a recent publication, Adeolu and Gupta (Adeolu & 63 Gupta, 2014) proposed dividing the genus Borrelia into two genera on the basis of genetic differences revealed by comparative genomics. The new genus name for the LB group of spirochaetes, Borreliella, has subsequently been entered in GenBank for some species of the group and in a validation list (List of new names and new combinations previously effectively, but not validly, published) (Oren & Garrity, 2015). However, rapidly expanding scientific knowledge and considerable conflicting evidence combined with the adverse consequences of splitting the genus Borrelia make such a drastic step somewhat premature. In our opinion, the basis of this division rests on preliminary evidence and should be rescinded

    MyD88 Deficiency Enhances Acquisition and Transmission of Borrelia burgdorferi by Ixodes scapularis Ticks

    No full text
    Borrelia burgdorferi strains exhibit various degrees of infectivity and pathogenicity in mammals, which may be due to their relative ability to evade initial host immunity. Innate immune cells recognize B. burgdorferi by Toll-like receptors (TLRs) that use the intracellular molecule MyD88 to mediate effector functions. To determine whether impaired TLR signaling enhances Ixodes scapularis acquisition of B. burgdorferi, we fed nymphs on wild-type (WT) and MyD88(−/−) mice previously infected with two clinical isolates of B. burgdorferi, BL206, a high-virulence strain, and B348, an attenuated strain. Seventy-three percent of the nymphs that fed on BL206-infected WT mice and 40% of the nymphs that fed on B348-infected WT mice acquired B. burgdorferi, whereas 100% of the nymphs that fed on MyD88(−/−) mice became infected, irrespective of B. burgdorferi strain. Ticks that acquired infection after feeding on MyD88(−/−) mice harbored more spirochetes than those that fed on WT mice, as assessed by quantitative PCR for B. burgdorferi DNA. Vector transmission of BL206 and B348 was also enhanced when MyD88(−/−) mice were the blood meal hosts, with the mean pathogen burden at the skin inoculation site significantly higher than levels in WT mice. These results show that the absence of MyD88 facilitates passage of both low- and high-infectivity B. burgdorferi strains between the tick vector and the mammal and enhances the infectivity of a low-infectivity B. burgdorferi strain
    corecore