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Abstract 

This paper investigates how the duration of a regime affects the likelihood of a permanent 

structural break by devising the duration-dependence in structural break (DDSB) method, 

which combines a structural break test and a duration dependence test. First, the locations of 

structural breaks are identified by Bai and Perron (1998)’s method. Then, it is estimated how 

a hazard rate changes in duration between structural breaks by parametric duration analysis 

using the Weibull and the log-logistic hazard functions.  

This study reveals the evidence of positive duration dependence in 13 out of 27 international 

stock indices and the pooled data. In other words, as one regime continues over time with 

unchanged parameter values, a new structural break is more likely to occur. This method 

discloses a lower degree of duration dependence than the duration-dependence Markov-

switching (DDMS) model (Durland and McCurdy, 1994) that considers temporary switches 

between a limited number of regimes. Also, some new patterns are emerged, e.g., more 

predominant positive duration dependence in bear markets, the secondary stock exchanges of 

a country and developing countries.  
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I. Introduction 

A ‘structural break’ is defined as the permanent and non-reverting change in the parameter 

values of a data generating process and thus invalidates an existing data generating process. 

Voluminous work has been carried out on the methods of detecting the positions and the 

number of structural breaks (Zeileis et al., 2003; Perron, 2006).  

However, the change in the likelihood of a structural break over one regime has not been fully 

investigated. This probability is technically interpreted as a hazard rate in duration analysis. If 

a hazard rate does not depend on the duration of a regime (i.e. time length after the last 

structural break), the distribution of duration will follow exponential distribution. However, if 

a hazard rate changes depending on the duration, it will significantly deviate from the 

exponential distribution. This is defined as ‘duration dependence in structural breaks’ in this 

study. 

Two types of duration dependence can be specified in terms of structural breaks. First, positive 

duration dependence in structural breaks implies that the structural breaks are more likely to 

occur as the same regime continues. In other words, the probability that any price run ends 

becomes higher over time. Second, negative duration dependence is equivalent to the 

decreasing likelihood of a new structural break in duration. If this is the case, the ongoing 

price regime is more likely to persist as it continues. 

The analysis of duration dependence itself is not new in economics and finance. It was first 

brought in for economic analysis of unemployment duration (Kiefer and Neumann, 1979; 

Kiefer, 1988)and then to the study of economic growth and business cycles, e.g., Durland and 

McCurdy (1994), Lam (2008) and Ozun and Turk (2009) among many others. Financial 

studies such as rational bubbles also utilized duration dependence (McQueen and Thorley, 

1994). For example, a stock bubble is the phenomenon of negative duration dependence where 

the probability that a positive run terminates (i.e. a crash) becomes lower as the run extends, 

but the size of the crash is larger. Since McQueen and Thorley (1994) found evidence of a 
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bubble in the US stock market, other researchers discovered the evidence of a bubble or 

duration dependence (Harman and Zuelke, 2004; Mokhtar et al., 2006; Zhang, 2008; Bhaduri 

and Mahima, 2009; Yuhn et al., 2010). A similar topic, the transition between bull and bear 

markets i.e., market cycle, also extensively used duration analysis (Maheu and McCurdy, 2000; 

Lunde and Timmermann, 2004; Chen and Shen, 2007; Chong et al., 2010; Castro, 2012).  

However, duration dependence in structural breaks has not been studied before. The research 

on structural breaks mostly focuses on revealing unknown breakpoints e.g. methodological 

survey by Perron (2006) or other examples like Kramer et al. (1988) and Rapach and Wohar 

(2006) among many others. On the other hand, the duration analysis does not usually consider 

the possibility of a structural break as it assumes one data generating process is effective over 

entire sample periods e.g. studies on rational bubbles.  

The closest approach to the duration analysis of structural breaks is the duration-dependence 

Markov-switching (DDMS) model (Durland and McCurdy, 1994). Markov  switching 

models (Hamilton, 1989) or more general state-space Markov switching models (Kim, 1993) 

analyze the probabilistic transition between two or more regimes. The DDMS model studies 

the impact of the duration of a regime on transition probabilities commonly between economic 

expansion and contraction or bullish and bearish markets. For example, Lam (2004) reveals 

positive duration dependence in an economic expansion and negative duration dependence in 

a contraction. Pelagatti (2008) reports that positive duration dependence is stronger in a 

recession than an expansion. Chen and Shen (2007) show positive duration dependence in 

East Asian stock exchanges. Castro (2012) discovers positive duration dependence in the 

Portuguese stock exchange. However, a temporary regime switch between a limited number 

of regimes is fundamentally different from a permanent structural break to a new regime. Also, 

the DDMS models do not utilize hazard functions unlike conventional duration analysis and 

treat all switches as endogenous.  
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This paper presents a two-stage method to identify duration dependence in structural breaks, 

namely the DDSB method, which allows for an unlimited number of regimes and exogenous 

breaks. Particularly, it specifies the dates of structural breaks using a separate structural break 

test by Bai and Perron (1998). Then, it investigates the impact of duration on the hazard rate 

of a regime. This study employs the weekly data of 27 stock price indices across 23 countries. 

Additionally, it examines the differences in duration dependence between bull and bear 

markets, developed and developing economies and the primary and secondary stock 

exchanges of a country.  

Then, it compares the results with the duration-dependence Markov-switching (DDMS) model 

(Durland and McCurdy, 1994). However, methodological issues regarding the choice between 

structural breaks and unit roots or their interplay (Perron, 2006) are not within the scope of 

this research. The rest of the paper is structured as follows. Section II explains the theoretical 

background of both the DDSB method and the DDMS method. Section III presents the 

empirical results and discusses the findings. Section IV concludes. 

II. Methodology 

The duration-dependence in structural break (DDSB) approach is a two-stage method. Its first 

stage is the Bai and Perron method (1998) that retrieves the best timings of structural breaks 

and provides duration data as the time length between adjacent structural breaks. The second 

stage is parametric duration analysis (i.e. survival analysis) on the duration data. On the other 

hand, the duration-dependence Markov switching (DDMS) method is essentially a state-space 

Markov switching model that investigates whether transition probabilities between regimes 

rely on the duration of a regime.  

Two methods provide alternative views on the changes in data generating processes. The 

DDSB method supposes structural breaks are exogenous with permanent jumps between 

numerous regimes. It implicitly assumes a trend-stationary process of price has structural 

breaks and implements piecewise regression. The DDMS method regards structural breaks as 
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endogenous and temporary switches between two or more regimes. It supposes a unit-root 

process of price and examines transition probabilities in a Markov chain. 

Structural breaks 

Several methods to detect structural breaks have been proposed. If the date of a structural 

break is known a priori, a Chow breakpoint test (Chow, 1960) can be conducted. If the date is 

unknown, the F statistics of all possible break dates can be used to date and test for a structural 

break. Andrews (1993) provided Wald, Lagrange and likelihood tests for this purpose.    

Bai and Perron (1998) generalized dating and testing methods for multiple unknown 

breakpoints, which were further developed by allowing stochastic parameters of trend and 

structural changes in vector autoregressive models (Hansen, 2000; Hansen, 2003; Hungnes, 

2010). Elliott (2003) suggested a test that allows for random, serially correlated or clustered 

breaks. On the other hand, CUSUM (cumulative sum) tests, which use accumulated errors 

(Brown et al., 1975), are also available (Stock, 1994), but Kramer (1988) showed they did not 

contain power against zero-mean regressors (Clements et al., 2006). Kuan (1995)’s general 

fluctuation test can be used to identify a structural break by interpreting increasing fluctuation 

as evidence. Perron (2006) summarized the tests for structural breaks in further detail.  

This study employs the Bai and Perron (1998) method since it is a parsimonious approach to 

analyze a time series of mean values. Their method provides the algorithm to specify the 

number and locations of multiple structural breaks based on a piecewise regression model. It 

is different from spline regression models (Marsh and Cormier, 2002) as Bai and Perron’s 

method allows for jumps between segments.  

Their method assumes that a data generating process of price (P) is linear in time (t) and the 

parameter values (c and λ) change at certain structural breaks.  

, ,j t j j j tP c t     (1) 
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where j is the index of a regime or a price partition between structural breaks and ε is the error 

term. 

Each linear price partition represents a time trend in that particular time period. Thus, one time 

variable (t) is enough to characterize price runs (Zeileis et al., 2002). The model can represent 

a non-linear behaviour while an individual partition maintains linearity (Campbell et al., 1997).  

However,  the timing of structural breaks is usually unknown and thus must be first 

considered. Suppose t1,…,tm are the breakpoints in T total observations, the locations of 

breakpoints are estimated by the following algorithm by Bai and Perron (1998): 

1
1 1...
,..., argmin[ ( ,..., )]

m
m mt t

t t RSS t t  (2) 

where arg min is the argument of minimum and RSS is the residual sum of. 

The aim is to find the global minimizers of the above objective function. Minimization can be 

accomplished using a grid search. Starting from a case of one breakpoint (m=1), piecewise 

linear regressions are repeated on all possible sets of sub-samples. At each repetition, a 

different position of the breakpoint is chosen. This whole procedure is repeated for all possible 

cases of different numbers of breakpoints from one to the maximum number of breakpoints 

until the best locations of breakpoints for each number of breakpoints are identified. The case 

of no structural break is additionally estimated. Finally, the best set of the number and 

locations of breakpoints, i.e. optimal breakpoints in Bai and Perron (1998, 2003), is selected 

by comparing information criteria. The number of breakpoints is known to be consistent over 

different model specifications (Liu et al., 1997).  

The burden of calculation can be minimized by the dynamic programming algorithm (Bai and 

Perron, 2003; Zeileis et al., 2003). The optimal breakpoints are obtained by solving the 

recursive problem: 

, 1,
( ) min [ ( ) ( 1, )]

mT m bmk b T k
RSS T RSS T RSS b T

  
    (3) 
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where RSS(Tm,T) is the residual sum of squares with optimal m breakpoints using T 

observations, RSS(b+1,T) is the residual sum of squares from a price run (b+1 to T), k is the 

maximum number of breaks and b is the position of the previous breakpoint. The idea is to 

find the optimal previous partner for each breakpoint b (Zeileis et al., 2003).  

The decision of the minimum length of a price partition, i.e. minimum duration, is important. 

It is commonly specified as the minimum proportion (q) of the sample size (T). Then, the 

maximum number of breaks (k) is (T/qT)-1. If the minimum duration is not properly chosen, 

some of the breakpoints will be missed out or appear at wrong locations. Basically, it should 

be chosen to be smaller than the reasonably shortest distance between two adjacent potential 

breaks. However, it must be meaningfully large to improve economic implications and reduce 

computation burden.  

Duration dependence in structural break 

The duration data is essentially the collection of time length between adjacent structural breaks 

identified in the first step. This study employs parametric duration analysis because the 

estimation is easier and complicated econometric analyses are more applicable than non-

parametric methods such as the Kaplan-Meier method (Kaplan and Meier, 1958) and Cox’s 

(Cox, 1972) semi-parametric method. 

The empirical test of duration dependence (Durland and McCurdy, 1994) investigates whether 

a hazard rate (i.e. a termination probability) increases, decreases or remains constant when the 

duration of a regime increases. Suppose f is the probability distribution function of a random 

variable (D) that represents the time length (i) after which a particular regime terminates or 

equivalently that of the duration of a regime. Then, the cumulative distribution function (F) is 

the probability that a regime ends before i. 

( )

( )

i

i

f prob D i

F prob D i

 

 
 (4) 
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A hazard rate (h) is defined as the conditional probability of a regime terminating at time i 

given the regime lasts until time i.  

i

i
i

F

f
h




1
 

(5) 

If positive duration dependence exists, the hazard rate increases as i goes up, but it decreases 

under negative duration dependence.  

For statistical inference, its functional form needs to be specified. The Weibull and the log-

logistic hazard function are two common choices as in Kiefer (1988) and McQueen and 

Thorley (1994)’s original studies.  

First, the Weibull hazard function following Kiefer (1988)’s specifications is:  

  1

i
h i  (6) 

where γ is a scale parameter and δ is a shape parameter. It is a generalized form of the 

exponential distribution and monotonically increases or decreases with duration i. Specifically, 

the hazard rate increases in duration i if δ>1, i.e. positive duration dependence, and decreases 

if δ<1, i.e. negative duration dependence. Where δ=1, the hazard rate is constant and the 

distribution of duration becomes the exponential distribution.  

Second, the log-logistic hazard function is specified as: 








 

1

(1 )
i

i
h

i
 (7) 

where both γ and δ are positive. It can be a non-monotonic function in i unlike the Weibull 

hazard function. If δ>1, the hazard function is a bump shape that is suitable where positive 

duration dependence is expected to exist only in the lower range of duration.. If 0<δ≤1, it 

monotonically decreases in duration.   
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The coefficients γ and δ are estimated by the maximum likelihood estimation (McQueen and 

Thorley, 1994). Then, the likelihood ratio (LR) test specifies whether duration dependence 

exists using the restriction of δ=1 and the LR statistic: 

2

(1)2[ln ln ] ~UR RLR L L    (8) 

where lnLUR is the log likelihood value of the unrestricted model and lnLR is that of the 

restricted model. 

The duration-dependence Markov-switching model 

On the other hand, the DDMS model explains how duration affects transition probabilities 

between multiple regimes. If a random variable rt is subject to parametric switches depending 

on state St that has integer values. Then, the process of rt, can be specified as. 

( ) ( )t t t tr S S u  
 

(9) 

where μ(St) and σ(St) are mean and variance equations of St, respectively. ut follows i.i.d 

N(0,1). 

μ(St) and σ(St) can be further specified as a linear equation of St for simplicity. 

2 2 1/2

0 1 0 1( )t t t tr S S u      
 

(10) 

where μ0, μ1, σ0 and σ1 are parameters.   

To fully describe the process of rt in this state-space model, how St evolves must be specified. 

A first-order Markov process is commonly employed to avoid computational burden and the 

excessive consumption of the degree of freedom in the higher-order Markov process (Durland 

and McCurdy, 1994). The conditional distribution of St depends on its immediate previous 

value, which is equivalent to knowing all of its past history. 

1 1 2 1Prob( | ) Prob( | , ,..., )t t t t tS s S S s S S S      (11) 
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where Prob is probability. It is usually assumed that two states (s = 1 or 0) exist. Then, all 

transition probabilities in a two-state first-order Markov process can be defined (Kim and 

Nelson, 1999): 

1 11

1 11

1 00

1 00

Prob( 1| 1)

Prob( 0 | 1) 1

Prob( 0 | 0)

Prob( 1| 0) 1

t t

t t

t t

t t

S S p

S S p

S S p

S S p









  

   

  

   

 (12) 

 

Suppose a latent continuous variable S*
t decides the value of St.  

*

*

Prob( 1) Prob( 0)

Prob( 0) Prob( 0)

t t

t t

S S

S S

  

  
 (13) 

where S*
t evolves as: 

*

0 1 1

~ (0,1)

t t t

t

S S

N

    


 (14) 

α0 and α1 are parameters.  

Then, the transition probabilities can be specified using a probit model: 

11 0 1 0 1

00 0 0

Prob( ) 1 ( )

Prob( ) ( )

t

t

p

p

    

  

       

    
 (15) 

where Φ is a cumulative standard normal distribution.   

On the other hand, the transition probabilities can be time-varying. Then, St is now conditional 

on the vector of explanatory variables, x. 

1Prob( | , )t tS S  t-1
x  (16) 

The duration-dependence Markov switching (DDMS) model assumes that duration (D) of a 

state can be representative of x as it contains the entire history of the Markov process (Durland 

and McCurdy, 1994). Consequently, the transition probabilities are: 
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1 1Prob( | , )t t tS S D   (17) 

where they progress through a Markov chain (St,Dt). Meanwhile, duration growth is defined: 

1 t-1( 1) if S =S

1 otherwise

t t

t

D
D

 
 


 (18) 

In Pelagatti (2008)’s the two-state example with duration, the transition probabilities are: 

1 1 11, 1 2

1 1 00, 3 4

1 1 11,

1 1 00,

Prob( 1| 1, ) 1 ( )

Prob( 0 | 0, ) ( )

Prob( 0 | 1, ) 1

Prob( 1| 0, ) 1

t t t i

t t t i

t t t i

t t t i

S S D i p i

S S D i p i

S S D i p

S S D i p

 

 

 

 

 

 

       

       

    

    

 (19) 

where β’s are unknown parameters. 

Pelagatti (2008) utilizes Bayesian inference on the model’s unknown parameters by the 

iteration of the Gibbs sampler. In his method, β2 and β4 specify duration dependence. In state 

1, positive duration dependence exists if β2 <0 and negative duration dependence exists if β2 

>0. In state 0, positive duration dependence exists if β4 >0 and negative duration dependence 

exists if β4 <0.  

III. Empirical Results 

The empirical analysis is based on 27 stock price indices across 23 countries. They include 19 

out of 20 of the largest stock exchanges in terms of market capitalisation in 2012 and some 

selected stock exchanges in developing countries. The data covers from 13 June 1984 or the 

earliest possible on the Datastream database to 31 December 2012. Weekly averages are 

employed since they can avoid excessive noise in daily data for structural break analysis and 

Markov-switching modelling and provide enough observations for duration analysis 

compared with monthly data. The maximum number of observations is 1,543. The next table 

presents the descriptive statistics of all 27 stock indices.  
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[ Insert Table 1 here] 

 

The first stage in the two-step DDSB method is to transform stock price index data to duration 

data. All index series are first de-trended to control for a long-term trend, as Canova (1999) 

confirmed the robustness of the identified structural breaks regardless of a de-trending method. 

Then, the Bai and Perron method is used to identify the optimal number and positions of 

structural breaks as in Zeileis (2002). the minimum duration (k) is 10 week.  

Each price index series is divided at identified optimal breakpoints. The first and last price 

partitions are removed since they are censored i.e. start or end date is not known. An individual 

price partition between adjacent optimal structural breaks becomes a separate regime. The 

average number of regimes in individual stock index series is approximately 55. The duration 

data is finally obtained by counting the number of observations in each regime. The mean 

duration is 23.0 weeks. The descriptive statistics of the duration data are summarized in the 

following table.  

 

[Insert Table 2 here] 

 

The second stage is to test for duration dependence in the derived duration data. Both Weibull 

and Log-logistic hazard functions are estimated. In addition, the duration data are separately 

tested depending on the slope of a regime. A regime with a positive slope of price is interpreted 

as the period of a bull market and that with a negative slope is specified as the period of a bear 

market. The results are presented in the next table.  

 

[Insert Table 3 here] 
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The estimated hazard function that is a better fit for each duration series is interpreted as a 

representative result. In general, the Weibull hazard function is a better fit. The values of 

Akaike Information Criteria are calculated by 2 2logAIC n L    where n is the number 

of parameters (n=2).  

 

[Insert Table 4 here] 

 

In summary, 13 out of 27 price indices (48%) show duration dependence in any of the positive, 

negative or total price regimes at the 5% significance level. All of the discovered duration 

dependence is positive duration dependence (δ>1). In Weibull hazard functions, it means that 

as a regime continues with the same parameter values, a new structural break is more likely 

to arise. Where the log-logistic hazard function is a better fit, positive duration dependence 

will eventually turn into negative duration dependence in a larger duration. Two examples of 

estimated hazard functions are shown in the following figure.  

 

[Insert Figure 1 here] 

 

On the other hand, the bear markets are more affected by positive duration dependence than 

the bull markets: 9 versus 4. This result may indicate that a structural break more likely to 

arise in bear markets than bull markets given the duration. Another finding is that the 

secondary stock exchanges of a country tend to have stronger positive duration dependence, 

e.g., the NYSE and the NASDAQ, the Tokyo 1st and 2nd Section, the Bombay Stock Exchange 

and the National Stock Exchange, and the Shanghai Stock Exchange and the Shenzhen Stock 

Exchange. This may be because the secondary stock markets are inherently more prone to 
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structural breaks than the primary markets. Meanwhile, the stock exchanges in developing 

economies show stronger duration dependence (7 out of 12, 58.3%) than those in developed 

economies (6 out of 15, 40.0%).  

In addition, the pooled data of all 27 duration series are analyzed for duration dependence in 

structural breaks. The following table confirms the existence of positive duration dependence 

in all positive, negative and total regimes of pooled data. Since the Weibull function is a better 

fit in all cases, it can be concluded that hazard rates decrease monotonically with duration.  

 

[Insert Table 5 here] 

 

Both estimated hazard functions are illustrated in the following figure. The magnitude of the 

change is smaller than that of the individual price index due to the weak duration dependence 

in some indices.   

 

[Insert Figure 2 here] 

 

On the other hand, the duration-dependence Markov-switching (DDMS) method is employed 

to analyze the identical price index data. Following Chen (2007) and Castro (2012), year-to-

year percentage returns are used and thus the number of observations is 12 less than the DDSB 

method. As in Durland and McCurdy (1994), two regimes are assumed to exist: high-return 

and low-volatility bull markets and low-return and high-volatility bear markets. A state 

variable evolves through the first-order Markov process as in Equations 11 and 12. Maximum 

duration is set at 52 weeks. Pelagatti (2008)’s Bayesian inference is utilized to estimate 

unknown parameters in Equation 19.  
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As seen in the next table, the DDMS method also indicates dominant positive duration 

dependence in the stock exchanges. In other words, one regime is more likely to switch to the 

other regime if it persists over time except the Brazilian stock exchange where exists negative 

duration dependence.   

 

[Insert Table 6 here] 

 

Strong evidence of positive duration dependence is consistent with the previous results by the 

DDSB method. However, in the latter DDMS method, the percentage of stock exchanges with 

positive duration dependence is fairly higher and more positive duration dependences are 

identified in the bull markets than the bear markets. The differences between developed and 

developing markets and between the primary and secondary markets are barely identifiable as 

shown in the next table.  

 

[Insert Table 7 here] 

 

These results may be because the DDMS restricts the number of regimes and treats potentially 

different regimes as either of two regimes. Then, it may over-estimate the probability of 

switching and indicate stronger positive duration dependence, in more price indices. On the 

other hand, the difference can be partly explained by methodological dissimilarities. Each 

method investigates duration dependence from different perspectives. Then, the preference of 

the method may depend on the belief between a trending regressor with structural breaks or a 

unit root process. However, there remain methodological issues in distinguishing between the 

two (Perron, 2006).   
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The evidence of duration dependence discovered needs to be interpreted with a little caution. 

First, the limitation on the length of duration may have affected the results. The DDSB method 

restricts minimum duration and the DDMS method constrains maximum duration. It 

inevitably leads to some censored duration data. However, minimum duration (10 weeks) in 

the DDSB method used in this study is far from the mean duration (23.0), and maximum 

duration (52 weeks) in the DDMS method seems reasonable in weekly data. Next, both 

methods assume that only duration affects hazard rates or transition probabilities. Although 

duration analysis is able to incorporate other explanatory variables (Kiefer, 1988), duration 

itself could be a reasonable approximation of the others (Durland and McCurdy, 1994). Thus, 

the impact of these limitations may be minimal.  

IV. Concluding Remarks 

This study conducted the duration analysis of structural breaks using the new two-step DDSB 

method, which combines a structural break test and a parametric duration dependence test, on 

the price index data of 27 international stock exchanges. It first identifies optimal breakpoints 

by the Bai and Perron method and obtains duration data by counting the length of each regime. 

Then, it examines the changes in hazard rates in duration by estimating hazard functions.  

In summary, this study discovered strong evidence for positive duration dependence in 

structural breaks in 13 out of 27 individual stock price indices as well as the pooled data. A 

significant positive relationship exists between the duration of a regime and the conditional 

probability of a new structural break. In other words, as one regime continues with the same 

parameter values, the probability of a new structural break becomes higher. This tendency is 

stronger in bear markets, the secondary stock exchanges of a country and developing countries. 

The existence of positive duration dependence was also supported by the duration-dependence 

Markov-switching (DDMS) method, which examines transition probabilities between two 

regimes. However, the DDMS method may over-estimate the degree of positive duration 

dependence since it uses a limited number of regimes. These results provided new insights in 
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understanding structural breaks, in particular the changes in the likelihood of structural breaks 

in duration; but there remain some methodological issues regarding the comparison between 

structural breaks and unit root processes, or the analysis of their interplay as summarized in 

Perron (2006). They remain on the agenda for future research.    
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Table 1. Descriptive statistics of stock index prices 

Region Country Index Obs. Start Date Mean Maximum Minimum SD 

US & Canada US NYSE Composite 1543 13/06/1983 4691.98 10256.20 906.49 2661.87 

    NASDAQ 100 1543 13/06/1983 1110.89 4704.73 99.45 921.80 

  Canada Toronto Comp. 1543 13/06/1983 6908.54 14984.20 2090.20 3659.75 

Europe UK FTSE100 1543 13/06/1983 3961.73 6930.20 916.70 1735.51 

Developed Germany Frankfurt MDAX 1305 04/01/1988 4815.81 11994.32 923.00 2884.79 

  Spain Madrid General 1543 13/06/1983 633.88 1716.89 50.97 425.28 

  France Paris CAC40 1330 13/07/1987 3276.08 6922.33 911.80 1401.36 

  Italy FTSE MIB 783 05/01/1998 29 767.86 50 108.56 12 620.57 9009.16 

  Swiss Swiss Market 1279 04/07/1988 5072.65 9487.50 1287.60 2310.11 

  Sweden Stokholm OMX 1409 06/01/1986 605.18 1537.33 87.65 374.73 

Asia Japan Tokyo TOPIX 1543 13/06/1983 1369.04 2884.80 640.22 466.10 

Developed   Tokyo 2nd Sec. 1543 13/06/1983 2389.15 5531.09 1042.22 818.75 

  Hongkong Hang Seng 1543 13/06/1983 10 743.34 31 586.90 715.01 7038.89 

  Korea KOSPI200 1200 08/01/1990 127.36 295.35 33.19 66.13 

  Taiwan Weighted 1543 13/06/1983 5688.35 12 424.53 636.04 2526.51 

BRICS Brazil Bovespa 1202 25/12/1989 23 338.61 73 438.00 0.01 23 080.44 

Developing Russia MICEX 798 22/09/1997 822.15 1956.14 18.53 615.00 

  India Bombay MSE100 1357 05/01/1987 1921.97 6675.78 120.56 1829.92 

    NSE CNX500 1148 07/01/1991 1824.54 5500.15 343.74 1444.78 

  China Shanghai A 1096 06/01/1992 1820.62 6330.48 298.77 1034.32 

    Shenzhen B 1057 05/10/1992 291.10 875.26 44.98 224.95 

Other  Poland Warsaw General 1133 22/04/1991 23 368.17 67 288.81 660.30 16 047.18 

Developing Turkey Istanbul 100 1305 04/01/1988 18 291.10 78 208.44 3.62 21 853.11 

  Mexico IPC35 1305 04/01/1988 11 610.82 43 705.83 87.42 12 552.10 

  Argentina Mervel 1211 23/10/1989 1074.86 3631.80 15.89 859.99 

  South Africa JSE All 914 26/06/1995 16 225.92 39 250.24 4359.51 10 221.72 

  Indonesia IDX Composite 1543 13/06/1983 941.51 4375.17 61.58 1089.33 

 

Note: this table shows the descriptive statistics of 27 weekly average stock price indices of 23 countries. 

The end dates are 31 Dec 2012 for all series. Obs. and SD stand for the number of observations and 

standard deviation, respectively. 
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Table 2. Descriptive statistics of duration data 

Region Country Index Obs. Mean Median Max. SD Skewness Kurtosis 

US & Canada US NYSE Composite 62 23.7903 20 70 14.5322 1.4359 4.6356 

    NASDAQ 100 60 24.7833 23 59 12.7000 1.0350 3.4218 

  Canada Toronto Comp. 69 21.3913 18 58 11.4419 1.2984 4.3507 

Europe  UK FTSE100 71 21.0563 16 63 11.8525 1.5630 5.3575 

Developed Germany Frankfurt MDAX 53 23.8302 21 61 12.6183 1.3698 4.5511 

  Spain Madrid General 70 21.2571 19 67 12.3695 2.0030 7.3311 

  France Paris CAC40 50 25.8600 21 95 15.5446 2.1727 9.3982 

  Italy FTSE MIB 38 19.8158 16 57 11.6546 1.5037 4.7509 

  Swiss Swiss Market 52 23.6923 21 55 13.4070 0.7665 2.4600 

  Sweden Stokholm OMX 60 22.8167 18 70 14.1894 1.5635 4.7563 

Asia Japan Tokyo TOPIX 66 22.8030 21 64 12.6128 1.4394 5.0026 

Developed   Tokyo 2nd Sect. 74 20.4730 19 62 9.2028 1.8350 8.0878 

  Hongkong Hang Seng 71 21.1268 18 71 11.5807 1.6218 6.5854 

  Korea KOSPI200 53 21.6226 20 42 9.7216 0.5757 2.2058 

  Taiwan Weighted 63 23.5079 20 75 14.5012 1.6832 5.9636 

BRICS Brazil Bovespa 42 27.5000 24 71 16.8599 0.8315 2.6873 

Developing Russia MICEX 31 24.2581 21 53 12.2365 0.9900 3.0399 

  India Bombay MSE100 62 20.9032 18 45 9.4794 0.8638 2.7420 

    NSE CNX500 50 22.0800 21 46 9.3827 0.8708 3.1266 

  China Shanghai A 45 22.8444 19 51 11.2330 0.8555 2.8577 

    Shenzhen B 49 20.8980 20 50 7.7278 1.5182 6.5676 

Other Poland Warsaw General 41 26.1463 19 102 17.9173 2.1986 9.1523 

Developing Turkey Istanbul 100 54 23.2963 19 84 15.8871 1.8019 6.4079 

  Mexico IPC35 57 21.6140 18 64 12.3053 1.9006 6.3810 

  Argentina Mervel 44 26.2955 20 82 16.5327 1.6655 5.3020 

  South Africa JSE All 35 24.3714 19 62 13.6707 1.2759 3.8426 

  Indonesia IDX Composite 62 23.0161 19 92 15.0687 2.6561 11.3878 

Average     55 23.0019 19 66 12.8233 1.4554 5.2723 

 

Note: this table shows the descriptive statistics of duration data that are derived by dividing the stock 

index data at optimal breakpoints. Minimum duration is 10 week. Obs. and SD stand for the number of 

observations in each duration series and standard deviation, respectively. 
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Table 3. Parametric duration dependence tests: individual indices 

Stock Type Weibull           Log-logistic         Fit Sig. 

Market  γ δ LogL AIC p(LR)   γ δ LogL AIC p(LR)       

US (+) 0.0450 1.0876 -133.50 271.01 0.5435   0.0280 1.4763 -136.66 277.32 0.0101   Wei   

NYSE ( - ) 0.1080 0.9068 -94.36 192.72 0.4988   0.0809 1.3219 -95.32 194.64 0.0917   Wei   

  Total 0.0703 0.9876 -229.02 462.04 0.9007   0.0485 1.3753 -233.33 470.65 0.0042   Wei   

US (+) 0.0123 1.4083 -118.81 241.61 0.0324   0.0049 1.8936 -121.99 247.98 0.0002   Wei ** 

NASDAQ ( - ) 0.0381 1.3292 -99.52 203.04 0.0669   0.0221 1.8340 -101.65 207.31 0.0003   Wei * 

  Total 0.0304 1.2353 -223.60 451.20 0.0492   0.0146 1.7309 -227.87 459.74 0.0000   Wei ** 

Canada (+) 0.0351 1.2134 -124.74 253.48 0.1723   0.0179 1.6961 -127.17 258.35 0.0008   Wei   

  ( - ) 0.1052 0.9804 -115.68 235.36 0.8801   0.0833 1.4062 -117.16 238.32 0.0201   Wei   

  Total 0.0674 1.0615 -242.48 488.96 0.5360   0.0459 1.4841 -246.95 497.89 0.0002   Wei   

UK (+) 0.0612 1.0385 -139.57 283.15 0.7680   0.0357 1.5049 -141.38 286.76 0.0050   Wei   

  ( - ) 0.0787 1.1213 -106.06 216.12 0.4192   0.0584 1.5831 -107.75 219.50 0.0030   Wei   

  Total 0.0747 1.0357 -247.69 499.38 0.7056   0.0471 1.5136 -250.36 504.72 0.0001   Wei   

Germany (+) 0.0227 1.3143 -127.23 258.46 0.0551   0.0080 1.9130 -129.03 262.07 0.0001   Wei * 

  ( - ) 0.0689 1.0639 -66.24 136.47 0.7301   0.0393 1.5685 -66.98 137.96 0.0303   Wei   

  Total 0.0367 1.1978 -194.62 393.24 0.1066   0.0165 1.7338 -197.56 399.13 0.0000   Wei   

Spain (+) 0.0608 1.0679 -122.15 248.30 0.6232   0.0312 1.5906 -123.35 250.69 0.0030   Wei   

  ( - ) 0.0689 1.0917 -122.63 249.25 0.4889   0.0316 1.7488 -121.85 247.71 0.0002   Log *** 

  Total 0.0655 1.0748 -245.12 494.24 0.4326   0.0322 1.6566 -245.66 495.32 0.0000   Wei   

France (+) 0.0321 1.1223 -116.36 236.73 0.4383   0.0139 1.6153 -118.08 240.16 0.0048   Wei   

  ( - ) 0.0148 1.6412 -69.69 143.37 0.0131   0.0064 2.1703 -72.46 148.92 0.0004   Wei ** 

  Total 0.0352 1.1626 -190.34 384.68 0.1776   0.0123 1.7656 -192.08 388.15 0.0000   Wei   

Italy (+) 0.1165 0.8741 -77.30 158.60 0.4064   0.0990 1.2667 -77.92 159.84 0.1869   Wei   

  ( - ) 0.0850 1.1318 -49.94 103.88 0.5457   0.0680 1.5604 -51.00 106.00 0.0443   Wei   

  Total 0.1111 0.9355 -128.33 260.67 0.5899   0.0876 1.3725 -129.26 262.53 0.0230   Wei   

Swiss (+) 0.0507 1.0696 -109.06 222.12 0.6646   0.0399 1.3816 -112.21 228.42 0.0449   Wei   

  ( - ) 0.1014 0.9036 -82.18 168.36 0.5331   0.0880 1.2580 -83.41 170.83 0.1891   Wei   

  Total 0.0716 0.9839 -191.73 387.46 0.8850   0.0596 1.3072 -196.23 396.46 0.0231   Wei   

Sweden (+) 0.0690 0.9357 -128.16 260.31 0.6310   0.0528 1.2683 -130.78 265.56 0.1103   Wei   

  ( - ) 0.0361 1.4642 -83.09 170.18 0.0237   0.0189 2.0020 -85.90 175.80 0.0002   Wei ** 

  Total 0.0734 0.9955 -217.55 439.10 0.9641   0.0431 1.4747 -219.61 443.23 0.0008   Wei   

Japan (+) 0.0545 1.0526 -123.48 250.96 0.7148   0.0334 1.4520 -126.39 256.77 0.0181   Wei   

Tokyo ( - ) 0.0636 1.0925 -114.98 233.95 0.5365   0.0484 1.4521 -118.13 240.25 0.0149   Wei   

  Total 0.0607 1.0584 -239.08 482.16 0.5681   0.0409 1.4434 -244.89 493.77 0.0008   Wei   

Japan (+) 0.0472 1.2722 -121.47 246.95 0.0820   0.0294 1.7569 -124.11 252.22 0.0002   Wei * 

Tokyo 2nd ( - ) 0.0252 1.3938 -127.95 259.90 0.0117   0.0045 2.3330 -126.91 257.83 0.0000   Log *** 

  Total 0.0356 1.3205 -250.29 504.57 0.0035   0.0138 1.9690 -253.11 510.21 0.0000   Wei *** 

Hong Kong (+) 0.0385 1.1791 -143.61 291.21 0.2035   0.0191 1.6919 -145.47 294.95 0.0003   Wei   

  ( - ) 0.1224 0.9749 -101.28 206.56 0.8560   0.1173 1.3339 -103.31 210.62 0.0535   Wei   

  Total 0.0737 1.0384 -248.09 500.19 0.6895   0.0521 1.4522 -252.56 509.12 0.0003   Wei   

Korea (+) 0.0863 0.9471 -93.76 191.52 0.7395   0.0887 1.1819 -96.90 197.80 0.3043   Wei   

  ( - ) 0.0136 1.6703 -88.81 181.62 0.0024   0.0037 2.4537 -89.93 183.86 0.0000   Wei *** 

  Total 0.0437 1.2062 -186.11 376.22 0.1105   0.0307 1.5756 -192.07 388.14 0.0003   Wei   
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Stock Type Weibull           Log-logistic         Fit Sig. 

Market  γ δ LogL AIC p(LR)   γ δ LogL AIC p(LR)       

Taiwan (+) 0.0696 0.9784 -126.92 257.83 0.8689   0.0421 1.4203 -128.50 261.01 0.0210   Wei   

  ( - ) 0.0651 1.0436 -104.40 212.80 0.7747   0.0444 1.4422 -106.61 217.22 0.0263   Wei   

  Total 0.0684 1.0025 -231.51 467.01 0.9795   0.0432 1.4299 -235.14 474.29 0.0014   Wei   

Brazil (+) 0.1166 0.7929 -87.18 178.36 0.1490   0.1130 1.0720 -88.81 181.63 0.6807   Wei   

  ( - ) 0.0147 1.3613 -74.91 153.82 0.1130   0.0055 1.8936 -76.25 156.51 0.0028   Wei   

  Total 0.0588 0.9749 -164.53 333.05 0.8396   0.0454 1.2841 -168.72 341.44 0.0598   Wei   

Russia (+) 0.0495 1.0551 -65.07 134.14 0.7919   0.0383 1.3506 -67.17 138.33 0.1597   Wei   

  ( - ) 0.0114 1.6563 -47.62 99.23 0.0247   0.0010 2.9331 -46.48 96.97 0.0001   Log *** 

  Total 0.0310 1.2430 -114.43 232.85 0.1467   0.0142 1.7557 -116.72 237.45 0.0008   Wei   

India (+) 0.0458 1.2238 -102.74 209.48 0.1852   0.0274 1.7006 -104.86 213.72 0.0015   Wei   

Bombai ( - ) 0.0377 1.2729 -110.59 225.19 0.1019   0.0193 1.8111 -112.39 228.78 0.0003   Wei   

  Total 0.0415 1.2485 -213.37 430.74 0.0363   0.0230 1.7551 -217.32 438.65 0.0000   Wei ** 

India (+) 0.0177 1.5066 -90.07 184.14 0.0170   0.0076 2.0717 -92.16 188.32 0.0001   Wei ** 

National ( - ) 0.0300 1.3228 -84.31 172.63 0.1039   0.0134 1.8766 -85.96 175.93 0.0011   Wei   

  Total 0.0234 1.4095 -174.56 353.11 0.0047   0.0101 1.9744 -178.23 360.46 0.0000   Wei *** 

China (+) 0.0358 1.2104 -69.72 143.44 0.3354   0.0245 1.5494 -72.24 148.47 0.0376   Wei   

Shanghai ( - ) 0.0486 1.1515 -92.61 189.22 0.3802   0.0281 1.6159 -94.41 192.82 0.0073   Wei   

  Total 0.0431 1.1728 -162.44 328.88 0.2020   0.0271 1.5779 -166.83 337.66 0.0008   Wei   

China (+) 0.0279 1.4210 -79.90 163.80 0.0363   0.0076 2.2308 -80.09 164.18 0.0001   Wei ** 

Shenzhen ( - ) 0.0060 1.9359 -81.38 166.77 0.0002   0.0007 2.9858 -82.34 168.68 0.0000   Wei *** 

  Total 0.0146 1.6317 -162.35 328.70 0.0001   0.0030 2.5041 -163.84 331.68 0.0000   Wei *** 

Poland (+) 0.0662 0.9091 -84.53 173.07 0.5681   0.0434 1.2951 -85.55 175.10 0.1651   Wei   

  ( - ) 0.0244 1.3844 -70.37 144.74 0.0874   0.0091 1.9952 -71.74 147.48 0.0014   Wei * 

  Total 0.0536 1.0257 -157.49 318.98 0.8322   0.0256 1.5388 -158.68 321.36 0.0022   Wei   

Turkey (+) 0.1106 0.9468 -87.07 178.14 0.7178   0.0883 1.3766 -87.90 179.80 0.0592   Wei   

  ( - ) 0.0729 0.9216 -108.50 220.99 0.5766   0.0501 1.2933 -110.29 224.57 0.1160   Wei   

  Total 0.0952 0.9015 -197.14 398.27 0.3153   0.0703 1.2995 -199.38 402.76 0.0246   Wei   

Mexico (+) 0.0486 1.1218 -109.19 222.39 0.4139   0.0167 1.8044 -108.91 221.81 0.0006   Log *** 

  ( - ) 0.0609 1.1474 -91.06 186.12 0.3670   0.0300 1.7458 -91.58 187.16 0.0018   Wei   

  Total 0.0560 1.1180 -200.89 405.79 0.2767   0.0229 1.7592 -200.99 405.98 0.0000   Wei   

Argentina (+) 0.0408 1.0859 -93.79 191.58 0.6120   0.0195 1.5916 -94.71 193.41 0.0118   Wei   

  ( - ) 0.0316 1.2144 -74.72 153.43 0.2464   0.0044 2.2590 -72.30 148.59 0.0002   Log *** 

  Total 0.0365 1.1412 -168.78 341.57 0.2597   0.0114 1.8296 -167.99 339.97 0.0000   Log *** 

South 

Africa (+) 0.0213 1.2875 -77.18 158.37 0.1672   0.0069 1.9379 -77.38 158.77 0.0014   Wei   

  ( - ) 0.0550 1.1627 -51.32 106.65 0.4637   0.0270 1.7615 -51.54 107.08 0.0170   Wei   

  Total 0.0364 1.1860 -129.84 263.68 0.2070   0.0144 1.8034 -130.20 264.40 0.0002   Wei   

Indonesia (+) 0.0411 1.1271 -120.79 245.59 0.3946   0.0182 1.6543 -122.38 248.75 0.0020   Wei   

  ( - ) 0.0784 1.0303 -103.68 211.35 0.8167   0.0230 1.8501 -101.44 206.87 0.0004   Log *** 

  Total 0.0588 1.0628 -225.49 454.98 0.5233   0.0225 1.7039 -225.12 454.25 0.0000   Log *** 

Note: this table shows the results of parametric duration analysis of 27 duration series in Table 2 using 

two hazard functions: Weibull (Wei) and Log-logistic (Log). Each duration data is divided into three 

sub-groups depending on the slope of a trending regressor of each regime: positive, negative and total. 
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γ is a scale and δ is a shape parameter of hazard functions. In general, if δ>1, positive duration 

dependence exists. If 0<δ<1, negative duration dependence exists. logL is log likelihood values and 

AIC is the Akaike information Criteria. p(LR) is the p-value of the likelihood ratio test for H0: δ=1.'Fit' 

indicates which hazard function is a better fit. In ‘Sig’ column, *** represents the significance at 1%, 

** represents the significance at 5% and * indicates significance at 10%. 
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Table 4. Summary: the duration dependence in structural break (DDSB) method  

 

Category Type Num. Sig 5% 

Market condition Bull 27 3 (11.11%) 

  Bear 27 9 (37.04%) 

Economic development Developed 15 6 (40.00%) 

  Developing 12 7 (58.33%) 

Market section Primary 4 1 (25.00%) 

  Secondary 4 4 (100.00%) 

Total All 27 13 (48.15%) 

Note: this table summarizes the percentage of significant duration dependence in three different 

categories. ‘Num.’ represents the number of stock indices in the category. ‘Sig 5%’ indicates 

significance at the 5% level. The significance is measured by p-values in the LR tests reported in Table 

3.  
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Table 5. Parametric duration dependence tests: pooled duration data 

 

Type Weibull           Log-logistic         Fit Sig. 

 γ δ LogL AIC p(LR)   γ δ LogL AIC p(LR)       

(+) 0.0525 1.0696 -2902.29 5808.59 0.0186   0.0304 1.5142 -2951.40 5906.80 0.0000   Wei ** 

( - ) 0.0567 1.1294 -2455.58 4915.17 0.0000   0.0295 1.6593 -2486.53 4977.05 0.0000   Wei *** 

Total 0.0558 1.0860 -5371.01 10 746.02 0.0001   0.0306 1.5728 -5445.71 10 895.42 0.0000   Wei *** 

 

Note: this table presents the results of the parametric duration dependence test of the pooled duration 

data of 27 stock price indices. The total number of identified regimes is 1484. The number of regimes 

with positive slope is 779 and that with negative slope is 705. The analysis employs two different 

distributions of hazard functions. Weibull (Wei) is monomotic and Loglogistic (Log) is a non-

monotonic function. γ is a scale and δ is a shape parameter of hazard functions. If δ>1, positive duration 

dependence exists. If 0<δ<1, negative duration dependence exists. logL is log likelihood values and 

AIC is the Akaike information Criteria. p(LR) is the p-value of the likelihood ratio test for H0: δ=1.'Fit' 

indicates which function is a better fit. In 'Sig' column, *** represents the significance at the 1% level. 

** represents the significance at the 5% level and * indicates significance at the 10% level. 
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Table 6. The duration-dependence Markov-switching models 

 

Stock Run         Stock Run      

Market Type Beta Dep. Sig 5%   Market Type Beta Dep. Sig 5% 

US (+) -0.0970 Pos **   Taiwan (+) -0.0347 Pos ** 

NYSE ( - ) 0.0322 Pos **     ( - ) 0.0571 Pos ** 

US (+) -0.0498 Pos     Brazil (+) 0.0061 Neg   

NASDAQ ( - ) 0.0135 Pos       ( - ) -0.0423 Neg   

Canada (+) -0.0184 Pos **   Russia (+) -0.0455 Pos ** 

  ( - ) 0.0503 Pos **     ( - ) 0.0177 Pos   

UK (+) -0.1188 Pos **   India (+) -0.0343 Pos ** 

  ( - ) 0.0120 Pos     Bombai ( - ) 0.0163 Pos   

Germany (+) -0.0492 Pos **   India (+) -0.0774 Pos ** 

  ( - ) 0.0714 Pos **   National ( - ) 0.0455 Pos ** 

Spain (+) -0.0082 Pos     China (+) -0.0066 Pos   

  ( - ) 0.0091 Pos     Shanghai ( - ) 0.0128 Pos   

France (+) -0.1220 Pos **   China (+) -0.0372 Pos ** 

  ( - ) 0.1259 Pos **   Shenzhen ( - ) 0.0600 Pos ** 

Italy (+) -0.0801 Pos **   Poland (+) -0.1474 Pos ** 

  ( - ) 0.1131 Pos **     ( - ) 0.1015 Pos   

Swiss (+) -0.0626 Pos **   Turkey (+) -0.0236 Pos ** 

  ( - ) 0.0211 Pos       ( - ) 0.0140 Pos   

Sweden (+) -0.0155 Pos     Mexico (+) -0.1035 Pos   

  ( - ) 0.0211 Pos       ( - ) 0.0796 Pos ** 

Japan (+) -0.0093 Pos     Argentina (+) -0.0269 Pos ** 

Tokyo ( - ) 0.0572 Pos **     ( - ) 0.0280 Pos ** 

Japan (+) -0.0336 Pos **   South Africa (+) -0.0002 Pos   

Tokyo 2nd ( - ) 0.0099 Pos       ( - ) 0.0252 Pos   

Hong Kong (+) -0.0073 Pos     Indonesia (+) -0.0118 Pos   

  ( - ) 0.0212 Pos       ( - ) 0.0517 Pos ** 

Korea (+) -0.0121 Pos               

  ( - ) 0.0329 Pos **             

 
Note: this table presents the analysis results of the duration-dependence Markov-switching (DDMS) 

models on the year-to-year return data of the same 27 stock indices. ‘Beta’ indicates the value of β2 in 

bull markets or that of β4 in bear markets. ‘Dep.’ is the type of duration dependence where ‘Pos’ is 

positive and ‘Neg’ is negative. ** under ‘Sig 5%’ indicates the significance of β2 or β4 at the 5% level.  
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Table 7. Summary: the duration dependence Markov-switching model  

 

Category Type Number Sig 5% 

Market condition Bull 27 16 (59.26%) 

  Bear 27 13 (48.15%) 

Economic development Developed 15 11 (73.33%) 

  Developing 12 9 (75.00%) 

Market section Primary 4 3 (75.00%) 

  Secondary 4 4 (100.00%) 

Total All 27 20 (74.07%) 

  

Note: this table summarizes the percentage of significant duration dependence revealed by the DDMS 

method in three different categories. ‘Sig 5%’ indicates the significance of β2 or β4 at the 5% level. 

‘Number’ indicates the number of indices in each category. 
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Figure 1. The estimated Weibull and log-logisitic hazard functions: selected examples 

The two graphs show the estimated Weibull hazard function of the positive runs of CNX500 of the 

National Stock Exchange in India and the estimated log-logistic hazard function of the negative runs of 

the Tokyo Stock Exchange 2nd Section Price Index. Both functions are a better fit for each specific stock 

price index. Y-axis is the hazard rate and X-axis is duration.  

 

India CNX500: positive run 

Weibull (=0.0177 and =1.5066) 

 

TSE 2nd Section: negative runs 

Log-logistic (=0.0045 and =2.3330) 
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Figure 2. The estimated Weibull and log-logisitic hazard functions: pooled duration data 

The two graphs show the estimated Weibull and log-logistic hazard functions of the pooled duration 

data of 27 indices. The Weibull hazard function in the upper panel is a better fit. Y-axis is the hazard 

rate and X-axis is duration.  

 

Pooled: total run 

Weibull (=0.0558 and =1.0860) 

 

Pooled: total run 

Log-logistic (=0.0306 and =1.5728) 

 

 


