108 research outputs found

    Non-linear regression analysis and analysis of variance of periods defined by irregular observations

    Get PDF
    Nonlinear regression and variance analyses of periods defined by irregular observation

    Transcriptomic responses of the olive fruit fly Bactrocera oleae and its symbiont Candidatus Erwinia dacicola to olive feeding

    Get PDF
    The olive fruit fly, Bactrocera oleae, is the most destructive pest of olive orchards worldwide. The monophagous larva has the unique capability of feeding on olive mesocarp, coping with high levels of phenolic compounds and utilizing non-hydrolyzed proteins present, particularly in the unripe, green olives. On the molecular level, the interaction between B. oleae and olives has not been investigated as yet. Nevertheless, it has been associated with the gut obligate symbiotic bacterium Candidatus Erwinia dacicola. Here, we used a B. oleae microarray to analyze the gene expression of larvae during their development in artificial diet, unripe (green) and ripe (black) olives. The expression profiles of Ca. E. dacicola were analyzed in parallel, using the Illumina platform. Several genes were found overexpressed in the olive fly larvae when feeding in green olives. Among these, a number of genes encoding detoxification and digestive enzymes, indicating a potential association with the ability of B. oleae to cope with green olives. In addition, a number of biological processes seem to be activated in Ca. E. dacicola during the development of larvae in olives, with the most notable being the activation of amino-acid metabolism

    A box-fitting algorithm in the search for periodic transits

    Full text link
    We study the statistical characteristics of a box-fitting algorithm to analyze stellar photometric time series in the search for periodic transits by extrasolar planets. The algorithm searches for signals characterized by a periodic alternation between two discrete levels, with much less time spent at the lower level. We present numerical as well as analytical results to predict the possible detection significance at various signal parameters. It is shown that the crucial parameter is the effective signal-to-noise ratio -- the expected depth of the transit divided by the standard deviation of the measured photometric average within the transit. When this parameter exceeds the value of 6 we can expect a significant detection of the transit. We show that the box-fitting algorithm performs better than other methods available in the astronomical literature, especially for low signal-to-noise ratios.Comment: 9 pages, 12 figures and 1 table, to appear in Astronomy & Astrophysic

    Long-term Variability Properties and Periodicity Analysis for Blazars

    Get PDF
    In this paper, the compiled long-term optical and infrared measurements of some blazars are used to analyze the variation properties and the optical data are used to search for periodicity evidence in the lightcurve by means of the Jurkevich technique and the discrete correlation function (DCF) method. Following periods are found: 4.52-year for 3C 66A; 1.56 and 2.95 years for AO 0235+164; 14.4, 18.6 years for PKS 0735+178; 17.85 and 24.7 years for PKS 0754+100; 5.53 and 11.75 for OJ 287. 4.45, and 6.89 years for PKS 1215; 9 and 14.84 years for PKS 1219+285; 2.0, 13.5 and 22.5 for 3C273; 7.1 year for 3C279; 6.07 for PKS 1308+326; 3.0 and 16.5 years for PKS 1418+546; 2.0 and 9.35 years for PKS 1514-241; 18.18 for PKS 1807+698; 4.16 and 7.0 for 2155-304; 14 and 20 years for BL Lacertae. Some explanations have been discussed.Comment: 10 pages, 2 table, no figure, a proceeding paper for Pacific Rim Conference on Stellar Astrophysics, Aug. 1999, HongKong, Chin

    The rotation and coma profiles of comet C/2004 Q2 (Machholz)

    Full text link
    Aims. Rotation periods of cometary nuclei are scarce, though important when studying the nature and origin of these objects. Our aim is to derive a rotation period for the nucleus of comet C/2004 Q2 (Machholz). Methods. C/2004 Q2 (Machholz) was monitored using the Merope CCD camera on the Mercator telescope at La Palma, Spain, in January 2005, during its closest approach to Earth, implying a high spatial resolution (50km per pixel). One hundred seventy images were recorded in three different photometric broadband filters, two blue ones (Geneva U and B) and one red (Cousins I). Magnitudes for the comet's optocentre were derived with very small apertures to isolate the contribution of the nucleus to the bright coma, including correction for the seeing. Our CCD photometry also permitted us to study the coma profile of the inner coma in the different bands. Results. A rotation period for the nucleus of P = 9.1 +/- 0.2 h was derived. The period is on the short side compared to published periods of other comets, but still shorter periods are known. Nevertheless, comparing our results with images obtained in the narrowband CN filter, the possibility that our method sampled P/2 instead of P cannot be excluded. Coma profiles are also presented, and a terminal ejection velocity of the grains v_gr = 1609 +/- 48 m/s is found from the continuum profile in the I band.Comment: 11 pages, 9 figures, accepted by A&

    Determination of rotation periods in solar-like stars with irregular sampling: the Gaia case

    Full text link
    We present a study on the determination of rotation periods (P) of solar-like stars from the photometric irregular time-sampling of the ESA Gaia mission, currently scheduled for launch in 2013, taking into account its dependence on ecliptic coordinates. We examine the case of solar-twins as well as thousands of synthetic time-series of solar-like stars rotating faster than the Sun. In the case of solar twins we assume that the Gaia unfiltered photometric passband G will mimic the variability of the total solar irradiance (TSI) as measured by the VIRGO experiment. For stars rotating faster than the Sun, light-curves are simulated using synthetic spectra for the quiet atmosphere, the spots, and the faculae combined by applying semi-empirical relationships relating the level of photospheric magnetic activity to the stellar rotation and the Gaia instrumental response. The capabilities of the Deeming, Lomb-Scargle, and Phase Dispersion Minimisation methods in recovering the correct rotation periods are tested and compared. The false alarm probability (FAP) is computed using Monte Carlo simulations and compared with analytical formulae. The Gaia scanning law makes the rate of correct detection of rotation periods strongly dependent on the ecliptic latitude (beta). We find that for P ~ 1 d, the rate of correct detection increases with ecliptic latitude from 20-30 per cent at beta ~ 0{\deg} to a peak of 70 per cent at beta=45{\deg}, then it abruptly falls below 10 per cent at beta > 45{\deg}. For P > 5 d, the rate of correct detection is quite low and for solar twins is only 5 per cent on average.Comment: 12 pages, 18 figures, accepted by MNRA

    The kinematics in the pc-scale jets of AGN The case of S5 1803+784

    Full text link
    We present a kinematic analysis of jet component motion in the VLBI jet of the BL Lac object S5 1803+784, which does not reveal long-term outward motion for most of the components. Understanding the complex kinematic phenomena can possibly provide insights into the differences between quasars and BL Lac objects. The blazar S5 1803+784 has been studied with VLBI at ν\nu =1.6, 2.3, 5, 8.4, and 15 GHz between 1993.88 and 2005.68 in 26 observing runs. We (re)analyzed the data and present Gaussian model-fits. We collected the already published kinematic information for this source from the literature and re-identified the components according to the new scenario presented in this paper. Altogether, 94 epochs of observations have been investigated. A careful study of the long-term kinematics reveals a new picture for component motion in S5 1803+784. In contrast to previously discussed motion scenarios, we find that the jet structure within 12 mas of the core can most easily be described by the coexistence of several bright jet features that remain on the long-term at roughly constant core separations (in addition to the already known {\it stationary} jet component \sim 1.4 mas) and one faint component moving with an apparent superluminal speed (\sim 19c, based on 3 epochs). While most of the components maintain long-term roughly constant distances from the core, we observe significant, smooth changes in their position angles. We report on an evolution of the whole jet ridge line with time over the almost 12 years of observations. The width of the jet changes periodically with a period of \sim 8 to 9 years. We find a correlation between changes in the position angle and maxima in the total flux-density. We present evidence for a geometric origin of the phenomena and discuss possible models.Comment: The manuscript will be published by A&

    Historic Light Curve and Long-term Optical Variation of BL Lacertae 2200+420

    Get PDF
    In this paper, historical optical(UBVRI) data and newly observed data from the Yunnan Observatory of China(about100 years) are presented for BL Lacertae. Maximum variations in UBVRI: 5.12, 5.31, 4.73, 2.59, and 2.54 and color indices of U-B = -0.11 +/- 0.20, B-V= 1.0 +/- 0.11, V-R= 0.73 +/- 0.19, V-I= 1.42 +/- 0.25, R-I= 0.82 +/- 0.11, and B-I= 2.44 +/- 0.29 have been obtained from the literature; The Jurkevich method is used to investigate the existence of periods in the B band light curve, and a long-term period of 14 years is found. The 0.6 and 0.88 year periods reported by Webb et al.(1988) are confirmed. In addition, a close relation between B-I and B is found, suggesting that the spectra flattens when the source brightens.Comment: 21 pages, 6 figures, 2 table, aasms4.sty, to be published in ApJ, Vol. 507, 199
    corecore