89 research outputs found

    The Instrument Set for Generating Fast Adiabatic Passage

    Get PDF
    The design and construction of a high-performance, low-cost, and easy to assemble adiabatic extension set for homebuilt and commercial spectrometers is described. Described apparatus set was designed for the fast adiabatic passage generation and is based on direct digital synthesizer DDS. This solution gives generator high signal to noise ratio, phase stability even during frequency change which is only possible in expansive commercial high-end hardware. Critical synchronization and timing issues are considered and solutions are discussed. Different experimental conditions and techniques for the measurements are briefly discussed. The proposed system is very flexible and might be used for the measurement of low-frequency nuclear magnetic resonance

    A facility and a web application for real-time monitoring of the TTC backbone status

    Get PDF
    The Timing Trigger and Control (TTC) system distributes timing signals from the LHC Radio Frequency (RF) source to the four experiments (ATLAS, ALICE, CMS and LHCb). A copy of these signals is also transmitted to a monitoring system, installed in the CERN Control Centre, which provides continuous measurement of selected parameters. A web application has been designed to ensure real time remote monitoring and post-mortem analysis of these data. The implemented system is aimed at providing a tool for a fast detection of TTC signal abnormality and unavailability which results in reliability improvement of the whole TTC dependent infrastructure. The paper discusses the architecture of the monitoring system including measurement setup as well as various concerns of data acquisition, storage and visualization

    The lichens of Bolshoy Tuters Island (Tytärsaari), Leningrad Region, Russia

    Get PDF
    The updated checklist of Tuters Island (Leningrad Region, Russia) is presented. Of 331 species of recognized biota, 314 species of lichens, 16 lichenicolous fungi and one non-lichenized saprobic fungus are reported from Tuters Island. Of them, 202 species are new to the study area. Aspicilia epiglypta, Fuscidea praeruptorum, Micarea byssacea and Sarcogyne hypophaeoides are reported for the first time for Russia, Roselliniella stereocaulorum – for European Russia, Aspicilia polychroma, Carbonea vorticosa, Cercidospora stereocaulorum, Cladonia ciliata f. flavicans, C. rangiformis, Parmelia ernstiae, Plectocarpon cf. encausticum and Roselliniella cladoniae – for North-Western European Russia; Bachmanniomyces uncialicola, Bacidina sulphurella, Micarea botryoides, Miriquidica griseoatra and Stereocaulon nanodes are new to the Leningrad Region.Peer reviewe

    Experimental and theoretical studies of the physicochemical and mechanical properties of multi-layered TiN/SiC films: Temperature effects on the nanocomposite structure

    Get PDF
    Nanoscale multilayered TiN/SiC films are of great importance in many electronic and industrial fields. The careful control over the structure of the laminates, nanocrystalline or amorphous, is crucial for their further applicability and study. However, several limitations in their fabrication have revealed important gaps in the understanding of this system. Here, we study influence of temperature on the physico-chemical and functional properties of TiN/SiC multilayers. We will show the clear increment on hardness of the samples, while the nanocomposite structure of the layers is maintained with no increment in crystal size. We will investigate the interstitial effects and rearrangements, between the TiN/SiC phases and their role in the enhanced mechanical response. Our experiments will clearly show a change in the modulation period of the samples, pointing to interfacial reactions, diffusion of ions or crystallization of new phases. Full Investigations of the film properties were carried out using several methods of analysis: XRD, XPS, FTIR, HR-TEM and SIMS Additionally, results were combined with First Principles MD computations of TiN/SiC heterostructures

    Investigations of proximity-induced superconductivity in the topological insulator Bi2Te3 by microRaman spectroscopy

    Get PDF
    We used the topological insulator (TI) Bi2Te3 and a high-temperature superconductor (HTSC) hybrid device for investigations of proximity-induced superconductivity (PS) in the TI. Application of the superconductor YBa2Cu3O7- δ (YBCO) enabled us to access higher temperature and energy scales for this phenomenon. The HTSC in the hybrid device exhibits emergence of a pseudogap state for T > Tc that converts into a superconducting state with a reduced gap for T < Tc. The conversion process has been reflected in Raman spectra collected from the TI. Complementary charge transport experiments revealed emergence of the proximity-induced superconducting gap in the TI and the reduced superconducting gap in the HTSC, but no signature of the pseudogap. This allowed us to conclude that Raman spectroscopy reveals formation of the pseudogap state but cannot distinguish the proximity-induced superconducting state in the TI from the superconducting state in the HTSC characterised by the reduced gap. Results of our experiments have shown that Raman spectroscopy is a complementary technique to classic charge transport experiments and is a powerful tool for investigation of the proximity-induced superconductivity in the Bi2Te3

    Multilayered vacuum-arc nanocomposite TiN/ZrN coatings before and after annealing: Structure, properties, first-principles calculations

    Get PDF
    Nanoscale multilayered TiN/ZrN films were deposited using sequential vacuum-arc deposition of Ti and Zr targets in a nitrogen atmosphere. Studies of film's properties were carried out using various modern methods of analysis, such as XRD, STEM, HRTEM, SIMS combined with results of nanoindentation and tribological tests. To interpret the mechanical properties of the deposited multilayer films first-principles calculations of TiN(111), ZrN(111) structures and TiN(111)/ZrN(111) multilayer were carried out. To study the influence of thermal annealing, several samples were annealed in air at the temperature 700 °C. All deposited samples were highly polycrystalline with quite large 20–25 nm crystals. The crystalline planes were very ordinated and demonstrated an excellent coordinated growth. The nanohardness and elastic modulus of non-annealed coatings reached 42 GPa and 348 GPa, respectively. Annealing in air at the temperature 700 °C led to partial oxidation of the multilayered coatings, however hardness of the non-oxidized part of the coatings remained as high, as for initial coatings. All deposited coatings demonstrate good wear resistance

    Multilayered vacuum-arc nanocomposite TiN/ZrN coatings before and after annealing: Structure, properties, first-principles calculations

    Get PDF
    Nanoscale multilayered TiN/ZrN films were deposited using sequential vacuum-arc deposition of Ti and Zr targets in a nitrogen atmosphere. Studies of film's properties were carried out using various modern methods of analysis, such as XRD, STEM, HRTEM, SIMS combined with results of nanoindentation and tribological tests. To interpret the mechanical properties of the deposited multilayer films first-principles calculations of TiN(111), ZrN(111) structures and TiN(111)/ZrN(111) multilayer were carried out. To study the influence of thermal annealing, several samples were annealed in air at the temperature 700 °C. All deposited samples were highly polycrystalline with quite large 20–25 nm crystals. The crystalline planes were very ordinated and demonstrated an excellent coordinated growth. The nanohardness and elastic modulus of non-annealed coatings reached 42 GPa and 348 GPa, respectively. Annealing in air at the temperature 700 °C led to partial oxidation of the multilayered coatings, however hardness of the non-oxidized part of the coatings remained as high, as for initial coatings. All deposited coatings demonstrate good wear resistance

    Role of Receptor-Interacting Protein 140 in human fat cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mice lacking <it>Receptor-interacting protein 140 (RIP140) </it>have reduced body fat which at least partly is mediated through increased lipid and glucose metabolism in adipose tissue. In humans, <it>RIP140 </it>is lower expressed in visceral white adipose tissue (WAT) of obese versus lean subjects. We investigated the role of <it>RIP140 </it>in human subcutaneous WAT, which is the major fat depot of the body.</p> <p>Methods</p> <p>Messenger RNA levels of <it>RIP140 </it>were measured in samples of subcutaneous WAT from women with a wide variation in BMI and in different human WAT preparations. <it>RIP140 </it>mRNA was knocked down with siRNA in <it>in vitro </it>differentiated adipocytes and the impact on glucose transport and mRNA levels of target genes determined.</p> <p>Results</p> <p><it>RIP140 </it>mRNA levels in subcutaneous WAT were decreased among obese compared to lean women and increased by weight-loss, but did not associate with mitochondrial DNA copy number. <it>RIP140 </it>expression increased during adipocyte differentiation <it>in vitro </it>and was higher in isolated adipocytes compared to corresponding pieces of WAT. Knock down of <it>RIP140 </it>increased basal glucose transport and mRNA levels of <it>glucose transporter 4 </it>and <it>uncoupling protein-1</it>.</p> <p>Conclusions</p> <p>Human <it>RIP140 </it>inhibits glucose uptake and the expression of genes promoting energy expenditure in the same fashion as the murine orthologue. Increased levels of human <it>RIP140 </it>in subcutaneous WAT of lean subjects may contribute to economize on energy stores. By contrast, the function and expression pattern does not support that <it>RIP140 </it>regulate human obesity.</p

    Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells

    Get PDF
    Obesity confers an increased risk of developing specific cancer forms. Although the mechanisms are unclear, increased fat cell secretion of specific proteins (adipokines) may promote/facilitate development of malignant tumors in obesity via cross-talk between adipose tissue(s) and the tissues prone to develop cancer among obese. We searched for novel adipokines that were overexpressed in adipose tissue of obese subjects as well as in tumor cells derived from cancers commonly associated with obesity. For this purpose expression data from human adipose tissue of obese and non-obese as well as from a large panel of human cancer cell lines and corresponding primary cells and tissues were explored. We found expression of ceruloplasmin to be the most enriched in obesity-associated cancer cells. This gene was also significantly up-regulated in adipose tissue of obese subjects. Ceruloplasmin is the body's main copper carrier and is involved in angiogenesis. We demonstrate that ceruloplasmin is a novel adipokine, which is produced and secreted at increased rates in obesity. In the obese state, adipose tissue contributed markedly (up to 22%) to the total circulating protein level. In summary, we have through bioinformatic screening identified ceruloplasmin as a novel adipokine with increased expression in adipose tissue of obese subjects as well as in cells from obesity-associated cancers. Whether there is a causal relationship between adipose overexpression of ceruloplasmin and cancer development in obesity cannot be answered by these cross-sectional comparisons
    corecore