103 research outputs found

    Pneumolysin Activates the NLRP3 Inflammasome and Promotes Proinflammatory Cytokines Independently of TLR4

    Get PDF
    Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1β, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1β plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1β secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system

    Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership

    Get PDF
    Current knowledge of yield potential and best agronomic management practices for perennial bioenergy grasses is primarily derived from small-scale and short-term studies, yet these studies inform policy at the national scale. In an effort to learn more about how bioenergy grasses perform across multiple locations and years, the U.S. Department of Energy (US DOE)/Sun Grant Initiative Regional Feedstock Partnership was initiated in 2008. The objectives of the Feedstock Partnership were to (1) provide a wide range of information for feedstock selection (species choice) and management practice options for a variety of regions and (2) develop national maps of potential feedstock yield for each of the herbaceous species evaluated. The Feedstock Partnership expands our previous understanding of the bioenergy potential of switchgrass, Miscanthus, sorghum, energycane, and prairie mixtures on Conservation Reserve Program land by conducting long-term, replicated trials of each species at diverse environments in the U.S. Trials were initiated between 2008 and 2010 and completed between 2012 and 2015 depending on species. Field-scale plots were utilized for switchgrass and Conservation Reserve Program trials to use traditional agricultural machinery. This is important as we know that the smaller scale studies often overestimated yield potential of some of these species. Insufficient vegetative propagules of energycane and Miscanthus prohibited farm-scale trials of these species. The Feedstock Partnership studies also confirmed that environmental differences across years and across sites had a large impact on biomass production. Nitrogen application had variable effects across feedstocks, but some nitrogen fertilizer generally had a positive effect. National yield potential maps were developed using PRISM-ELM for each species in the Feedstock Partnership. This manuscript, with the accompanying supplemental data, will be useful in making decisions about feedstock selection as well as agronomic practices across a wide region of the country

    A school-based intervention to reduce overweight and inactivity in children aged 6–12 years: study design of a randomized controlled trial

    Get PDF
    Background Effective interventions to prevent overweight and obesity in children are urgently needed especially in inner-city neighbourhoods where prevalence of overweight and inactivity among primary school children is high. A school based intervention was developed aiming at the reduction of overweight and inactivity in these children by addressing both behavioural and environmental determinants. Methods/design The main components of the intervention (Lekker Fit!) are the re-establishment of a professional physical education teacher; three (instead of two) PE classes per week; additional sport and play activities outside school hours; fitness testing; classroom education on healthy nutrition, active living and healthy lifestyle choices; and the involvement of parents. The effectiveness of the intervention is evaluated through a cluster randomized controlled trial in 20 primary schools among grades 3 through 8 (6–12 year olds). Primary outcome measures are BMI, waist circumference and fitness. Secondary outcome measures are assessed in a subgroup of grade 6–8 pupils (9–12 year olds) through classroom questionnaires and constitute of nutrition and physical activity behaviours and behavioural determinants. Multilevel regression analyses are used to study differences in outcomes between children in the intervention schools and in control schools, taking clustering of children within schools into account. Discussion Hypotheses are that the intervention results in a lower prevalence of children being overweight and an improved mean fitness score, in comparison with a control group where the intervention is not implemented. The results of our study will contribute to the discussion on the role of physical education and physical activity in the school curriculum. Trial registration [ISRCTN84383524

    Updated guidance on the management of children with cystic fibrosis transmembrane conductance regulator-related metabolic syndrome/cystic fibrosis screen positive, inconclusive diagnosis (CRMS/CFSPID)

    Get PDF
    Over the past two decades there has been considerable progress with the evaluation and management of infants with an inconclusive diagnosis following Newborn Screening (NBS) for cystic Fibrosis (CF). In addition, we have an increasing amount of evidence on which to base guidance on the management of these infants and, importantly, we have a consistent designation being used across the globe of CRMS/CFSPID. There is still work to be undertaken and research questions to answer, but these infants now receive more consistent and appropriate care pathways than previously. It is clear that the majority of these infants remain healthy, do not convert to a diagnosis of CF in childhood, and advice on management should reflect this. However, it is also clear that some will convert to a CF diagnosis and monitoring of these infants should facilitate their early recognition. Those infants that do not convert to a CF diagnosis have some potential of developing a CFTR-RD later in life. At present, it is not possible to quantify this risk, but families need to be provided with clear information of what to look out for. This paper contains a number of changes from previous guidance in light of developing evidence, but the major change is the recommendation of a detailed assessment of the child with CRMS/CFSPID in the sixth year of age, including respiratory function assessment and imaging. With these data, the CF team can discuss future care arrangements with the family and come to a shared decision on the best way forward, which may include discharge to primary care with appropriate information. Information is key for these families, and we recommend consideration of a further appointment when the individual is a young adult to directly communicate the implications of the CRMS/CFSPID designation

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    Accounting: A General Commentary on an Empirical Science

    Get PDF
    Many researchers have questioned the view of accounting as a science. Some maintain that it is a service activity rather than a science, yet others entertain the view that it is an art or merely a technology. While it is true that accounting provides a service and is a technology (a methodology for recording and reporting), that fact does not prevent accounting from being a science. Based upon the structure and knowledge base of the discipline, this paper presents the case for accounting as an empirical science

    The Neutrophil NLRC4 Inflammasome Selectively Promotes IL-1β Maturation without Pyroptosis during Acute Salmonella Challenge

    Get PDF
    The macrophage NLRC4 inflammasome drives potent innate immune responses against Salmonella by eliciting caspase-1-dependent proinflammatory cytokine production (e.g., interleukin-1β [IL-1β]) and pyroptotic cell death. However, the potential contribution of other cell types to inflammasome-mediated host defense against Salmonella was unclear. Here, we demonstrate that neutrophils, typically viewed as cellular targets of IL-1β, themselves activate the NLRC4 inflammasome during acute Salmonella infection and are a major cell compartment for IL-1β production during acute peritoneal challenge invivo. Importantly, unlike macrophages, neutrophils do not undergo pyroptosis upon NLRC4 inflammasome activation. The resistance of neutrophils to pyroptotic death is unique among inflammasome-signaling cells so far described and allows neutrophils to sustain IL-1β production at a site of infection without compromising the crucial inflammasome-independent antimicrobial effector functions that would be lost if neutrophils rapidly lysed upon caspase-1 activation. Inflammasome pathway modification in neutrophils thus maximizes host proinflammatory and antimicrobial responses during pathogen challenge
    corecore