26 research outputs found

    Lipid composition and dynamics of cell membranes of Bacillus stearothermophilus adapted to amiodarone

    Get PDF
    Bacillus stearothermophilus, a useful model to evaluate membrane interactions of lipophilic drugs, adapts to the presence of amiodarone in the growth medium. Drug concentrations in the range of 1-2 [mu]M depress growth and 3 [mu]M completely suppresses growth. Adaptation to the presence of amiodarone is reflected in lipid composition changes either in the phospholipid classes or in the acyl chain moieties. Significant changes are observed at 2 [mu]M and expressed by a decrease of phosphatidylethanolamine (relative decrease of 23.3%) and phosphatidylglycerol (17.9%) and by the increase of phosphoglycolipid (162%). The changes in phospholipid acyl chains are expressed by a decrease of straight-chain saturated fatty acids (relative decrease of 12.2%) and anteiso-acids (22%) with a parallel increase of the iso-acids (9.8%). Consequently, the ratio straight-chain/branched iso-chain fatty acids decreases from 0.38 (control cultures) to 0.30 (cultures adapted to 2 [mu]M amiodarone). The physical consequences of the lipid composition changes induced by the drug were studied by fluorescence polarization of diphenylhexatriene and diphenylhexatriene-propionic acid, and by differential scanning calorimetry. The thermotropic profiles of polar lipid dispersions of amiodarone-adapted cells are more similar to control cultures (without amiodarone) than those resulting from a direct interaction of the drug with lipids, i.e., when amiodarone was added directly to liposome suspensions. It is suggested that lipid composition changes promoted by amiodarone occur as adaptations to drug tolerance, providing the membrane with physico-chemical properties compatible with membrane function, counteracting the effects of the drug.http://www.sciencedirect.com/science/article/B6VNN-419BF60-K/1/8f2d4fae7f9c131d26230cf4123da94

    Errors in protein synthesis increase the level of saturated fatty acids and affect the overall lipid profiles of yeast

    Get PDF
    The occurrence of protein synthesis errors (mistranslation) above the typical mean mistranslation level of 10-4 is mostly deleterious to yeast, zebrafish and mammal cells. Previous yeast studies have shown that mistranslation affects fitness and deregulates genes related to lipid metabolism, but there is no experimental proof that such errors alter yeast lipid profiles. We engineered yeast strains to misincorporate serine at alanine and glycine sites on a global scale and evaluated the putative effects on the lipidome. Lipids from whole cells were extracted and analysed by thin layer chromatography (TLC), liquid chromatography-mass spectrometry(LC-MS) and gas chromatography (GC). Oxidative damage, fatty acid desaturation and membrane fluidity changes were screened to identify putative alterations in lipid profiles in both logarithmic (fermentative) and post-diauxic shift (respiratory) phases. There were alterations in several lipid classes, namely lyso-phosphatidylcholine, phosphatidic acid, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and triglyceride, and in the fatty acid profiles, namely C16:1, C16:0, C18:1 and C18:0. Overall, the relative content of lipid species with saturated FA increased in detriment of those with unsaturated fatty acids. The expression of the OLE1 mRNA was deregulated, but phospholipid fluidity changes were not observed. These data expand current knowledge of mistranslation biology and highlight its putative roles in human diseases.publishe

    Dual imaging gold nanoplatforms for targeted radiotheranostics

    Full text link
    Gold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools, mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life. Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating Gd3+ for Magnetic Resonance Imaging (MRI) and 67Ga3+ for Single Photon Emission Computed Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with anity towards the gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely PC3 prostate cancer cells. The potential of these multimodal imaging nanoconstructs was thoroughly investigated by the assessment of their magnetic properties, in vitro cellular uptake, biodistribution, and radiosensitisation assays. The relaxometric properties predict a potential T1-and T2-MRI application. The promising in vitro cellular uptake of 67Ga/Gd-based bombesin containing particles was confirmed through biodistribution studies in tumor bearing mice, indicating their integrity and ability to target the GRPr. Radiosensitization studies revealed the therapeutic potential of the nanoparticles. Moreover, the DOTA chelating unit moiety versatility gives a high theranostic potential through the coordination of other therapeutically interesting radiometals. Altogether, our nanoparticles are interesting nanomaterial for theranostic application and as bimodal T1-and T2-MRI / SPECT imaging probes.This research was funded by FCT (Portuguese Foundation for Science and Technology), grant numbers EXCL/QEQ-MED/0233/2012, UID/Multi/04349/2013 and PTDC/MED-QUI/29649/2017. CFGCG and MMCAC thank FCT and FEDER through the COMPETE Program for funding the CQC (UID/QUI/00313/2013 and PEst-OE/QUI/UI0313/2014). P.L-L. thanks Ministry of Economy, Industry and Competitiviy for SAF2017-83043-R, and Comunity of Madrid, FEDER and FSE for S2017/BMD-368

    Rapeseed oil-rich diet alters in vitro menadione and nimesulide hepatic mitochondrial toxicity

    No full text
    Diet-induced changes in the lipid composition of mitochondrial membranes have been shown to influence physiological processes. However, the modulation effect of diet on mitochondrially-active drugs has not yet received the deserved attention. Our hypothesis is that modulation of membrane dynamics by diet impacts drug-effects on liver mitochondrial functioning. In a previous work, we have shown that a diet rich in rapeseed oil altered mitochondrial membrane composition and bioenergetics in Wistar rats. In the present work, we investigated the influence of the modified diet on hepatic mitochondrial activity of two drugs, menadione and nimesulide, and FCCP, a classic protonophore, was used for comparison. The results showed that the effects of menadione and nimesulide were less severe on liver mitochondria for rats fed the modified diet than on rats fed the control diet. A specific effect on complex I seemed to be involved in drug-induced mitochondria dysfunction. Liver mitochondria from the modified diet group were more susceptible to nimesulide effects on MPT induction. The present work demonstrates that diet manipulation aimed at modifying mitochondrial membrane properties alters the toxicity of mitochondria active agents. This work highlights that diet may potentiate mitochondrial pharmacologic effects or increase drug-induced liabilities

    Lipid composition changes induced by tamoxifen in a bacterial model system

    Get PDF
    A putative relationship between growth impairment of Bacillus stearothermophilus by tamoxifen (TAM) and TAM-induced perturbation of the physical properties of bacterial membrane lipids has been observed. The supplementation of the growth medium with Ca2+ (a membrane stabilizer) partially relieves growth inhibition by TAM, allowing growth at TAM concentrations that fully impair growth in the basal medium. B. stearothermophilus modifies the membrane lipid composition in response to the addition of TAM to the growth medium and the response is sensitive to Ca2+. Changes in lipid composition are observed in the acyl chains and in the polar head groups of phospholipids. The physical effects of alteration in these lipids was studied by fluorescence polarization of DPH and DPH-PA. Polar lipid dispersions from TAM-adapted cells grown in a Ca2+ medium show a shift of Tm to higher temperatures and a significant increase of the structural order as compared to lipids from control cells, suggesting that TAM-induced lipid composition changes compensate for the destabilizing effects of the cytostatic on membrane organization. The polar lipids from cells grown in the basal medium containing tamoxifen are also altered, but these alterations do not promote order increase of the bilayer in spite of a deviation of Tm to higher temperatures as detected by DPH. Data indicate that B. stearothermophilus controls the membrane lipid composition in response to tamoxifen, to compensate for TAM-promoted disordering in membranes and to provide an appropriate packing of phospholipid molecules in a stable bilayer, putatively disturbed by TAM incorporation.http://www.sciencedirect.com/science/article/B6T1T-3Y6PVPV-9/1/5fd659e10f4fc0e7d0a423e4e48becd

    Lysosomal Storage Disease-Associated Neuropathy: Targeting Stable Nucleic Acid Lipid Particle (SNALP)-Formulated siRNAs to the Brain as a Therapeutic Approach

    Get PDF
    ReviewMore than two thirds of Lysosomal Storage Diseases (LSDs) present central nervous system involvement. Nevertheless, only one of the currently approved therapies has an impact on neuropathology. Therefore, alternative approaches are under development, either addressing the underlying enzymatic defect or its downstream consequences. Also under study is the possibility to block substrate accumulation upstream, by promoting a decrease of its synthesis. This concept is known as substrate reduction therapy and may be triggered by several molecules, such as small interfering RNAs (siRNAs). siRNAs promote RNA interference, a naturally occurring sequence-specific post-transcriptional gene-silencing mechanism, and may target virtually any gene of interest, inhibiting its expression. Still, naked siRNAs have limited cellular uptake, low biological stability, and unfavorable pharmacokinetics. Thus, their translation into clinics requires proper delivery methods. One promising platform is a special class of liposomes called stable nucleic acid lipid particles (SNALPs), which are characterized by high cargo encapsulation efficiency and may be engineered to promote targeted delivery to specific receptors. Here, we review the concept of SNALPs, presenting a series of examples on their efficacy as siRNA nanodelivery systems. By doing so, we hope to unveil the therapeutic potential of these nanosystems for targeted brain delivery of siRNAs in LSDs.This work was supported by the Portuguese Society for Metabolic Disorders (Sociedade Portuguesa de Doenças Metabólicas, SPDM—Bolsa SPDM de apoio à investigação Dr. Aguinaldo Cabral 2018; 2019DGH1629/ SPDM2018I&D) and Sanfilippo Children’s Foundation (SCF Incubator Grant 2019; 2019DGH1656/SCF2019I&D). Additional support came from the European Regional Development Fund (ERDF), through the Centro 2020 Regional Operational Programme (project CENTRO-01-0145-FEDER-000008: BrainHealth 2020), and the COMPETE 2020—Operational Programme for Competitiveness and Internationalisation and Portuguese national funds via FCT—Fundação para a Ciência e a Tecnologia (projects POCI-01-0145-FEDER-016390: CANCEL STEM and POCI-01-0145-FEDER-007440; UIDB/04539/2020). L.S.M. is funded by FCT/MCTES National Funds under project CEECIND/04242/2017info:eu-repo/semantics/publishedVersio

    Multiparametric MRI characterization of the G144 GBM model

    No full text
    Trabajo presentado en el ESMRMB 38th Annual Scientific Meeting, celebrado en modalidad virtual del 07 al 09 de octubre de 2021.[Introduction]: Different orthotopic murine preclinical models have been developed to study the diagnosis, progression and therapy validation of glioblastoma multiforme (GBM)1, the most frequent and lethal malignant brain tumor2. Among them, the xenograft model established by stereotactic injection of the human G144 stem cells emerges as one of the best approaches to replicate the human GBM features in immunocompromised mice and to address GBM genetics and histopathology3,4,5. Magnetic resonance imaging (MRI) is a powerful tool to obtain structural, functional and molecular information on the physiopathology of intracranial tumors, but very few studies have been performed with this GBM model4. The aim of this work is to characterize the preclinical G144 glioma model by multiparametric (MP)-MRI approaches. [Methods]: The orthotopic GBM was developed in NOD-SCID mice (n=5) by injecting 105 G144 cells in the right caudate nucleus. MRI studies were carried out in a Bruker 7T system. Tumor growth was followed up by T2 weighted (T2W) images, and MP-MRI studies were performed when the tumor volume was ~70 mm3: T2 maps, magnetization transfer (MT) images, diffusion weighted images and dynamic contrast enhancement (DCE) using the intravenous injection of 0.25 mmol/Kg of Gadovist® (Bayer) as contrast agent (CA). Parametric maps were generated with a home-made software built in Matlab and relative contrast enhancement (RCE) maps were obtained using the software DCE@ourlab6. Regions of interest (ROIs) were manually selected to quantify the obtained parameters. [Results]: Tumors were visualized in T2W MRI 30-50 days post cell-injection (p.i.) and the volume to perform the MP-MRI studies was reached 53-104 days p.i. Hyperintensity spots were heterogeneously observed in the tumor in T2W and in contrast-enhance T1W (CE-tumor) images (Figure 1). DCE studies showed the progressive and faster accumulation of CA in the CE-tumor ROI than in the rest of the ROIs (Figure 2). CEtumor also showed higher T2 and Mean Diffusivity (MD) values, and lower MT and Fractional Anisotropy (FA) values (Figure 3). [Discussion]: To our knowledge, this is the first MP-MRI characterization of a GBM humanized mouse model established from G144 cells. The results point that necrosis, inflammatory processes and loss of structural integrity of the tissue are occurring in the CE-tumor area compared with the rest of the ROIs, similarly to MRI characteristics from human GBM patients7. In order to improve the knowledge of this GBM model utility, further experiments will be performed to evaluate different therapies effects in the MRI parameters

    Toxicity assessment of the herbicide metolachlor comparative effects on bacterial and mitochondrial model systems

    Get PDF
    Metolachlor is one of the most intensively used chloroacetamide herbicides. However, its effects on the environment and on non-target animals and humans as well as its interference at a cell/molecular level have not yet been fully elucidated. The aim of this study was: firstly, to evaluate the potential toxicity of metolachlor at a cell/subcellular level by using two in vitro biological model systems (a strain of Bacillus stearothermophilus and rat liver mitochondria); secondly, to evaluate the relative sensibility of these models to xenobiotics to reinforce their suitability for pollutant toxicity assessment. Our results show that metolachlor inhibits growth and impairs the respiratory activity of B.stearothermophilus at concentrations two to three orders of magnitude higher than those at which bacterial cells are affected by other pesticides. Also at concentrations significantly higher than those of other pesticides, metolachlor depressed the respiratory control ratio, membrane potential and respiration of rat liver mitochondria when malate/glutamate or succinate were used as respiratory substrates. Moreover, metolachlor impaired the respiratory activity of rat liver mitochondria in the same concentration range at which it inhibited bacterial respiratory system (0.4-5.0 micromol/mg of protein). In conclusion, the high concentration range at which metolachlor induces toxicity in vitro suggests that this compound is safer than other pesticides previously studied in our laboratory, using the same model systems. The good parallelism between metolachlor effects on both models and the toxicity data described in the literature, together with results obtained in our laboratory with other compounds, indicate the suitability of these systems to assess toxicity in vitro

    Toxicity assessment of the herbicide metolachlor comparative effects on bacterial and mitochondrial model systems

    No full text
    Metolachlor is one of the most intensively used chloroacetamide herbicides. However, its effects on the environment and on non-target animals and humans as well as its interference at a cell/molecular level have not yet been fully elucidated. The aim of this study was: firstly, to evaluate the potential toxicity of metolachlor at a cell/subcellular level by using two in vitro biological model systems (a strain of Bacillus stearothermophilus and rat liver mitochondria); secondly, to evaluate the relative sensibility of these models to xenobiotics to reinforce their suitability for pollutant toxicity assessment. Our results show that metolachlor inhibits growth and impairs the respiratory activity of B.stearothermophilus at concentrations two to three orders of magnitude higher than those at which bacterial cells are affected by other pesticides. Also at concentrations significantly higher than those of other pesticides, metolachlor depressed the respiratory control ratio, membrane potential and respiration of rat liver mitochondria when malate/glutamate or succinate were used as respiratory substrates. Moreover, metolachlor impaired the respiratory activity of rat liver mitochondria in the same concentration range at which it inhibited bacterial respiratory system (0.4-5.0 micromol/mg of protein). In conclusion, the high concentration range at which metolachlor induces toxicity in vitro suggests that this compound is safer than other pesticides previously studied in our laboratory, using the same model systems. The good parallelism between metolachlor effects on both models and the toxicity data described in the literature, together with results obtained in our laboratory with other compounds, indicate the suitability of these systems to assess toxicity in vitro

    Nimesulide interaction with membrane model systems : are membrane physical effects involved in nimesulide mitochondrial toxicity?

    No full text
    Nimesulide (NIM), a widely used nonsteroidal anti-inflammatory drug (NSAID), is known to interfere with mitochondrial physiology and to cause idiosyncratic hepatotoxicity. In this study, we characterized the effects of NIM on the physical properties of membrane models containing the main phospholipid classes of the inner mitochondrial membrane: phosphatidylcholine (PC), phosphatidylethanolamine (PE) and cardiolipin (CL). NIM binding/incorporation was observed with the mitochondrial membrane mimicking model composed of dioleoyl PC (DOPC), dioleoyl PE (DOPE) and tetraoleoyl CL (TOCL) at a 1:1:1 M ratio, as well as an increase of membrane permeability, monitored by calcein release, and an increase of lipid disorder, evaluated by fluorescence anisotropy of DPH-PA. Consistently, DSC thermograms of dipalmitoyl PC (DPPC) and a mixture of dipalmitoyl PE (DPPE) and TOCL (7:3 M ratio) showed a NIM-induced decrease of the cooperativity of the phase transition and a shift of the DPPC endotherm to lower temperatures. On the other hand, (31)P NMR studies with the ternary lipid model indicated a stabilizing effect of NIM on the lipid bilayer structure. Quenching of the fluorescent probes DPH and DPH-PA revealed a peripheral insertion of NIM in the hydrophobic portion of the bilayer. Our data indicate that NIM may influence mitochondria physiological processes by interfering with membrane structure and dynamics. The relevance of these findings will be discussed in terms of the reported NIM effects on mitochondria transmembrane potential, protonophoresis, and induction of the permeability transition pore
    corecore