78 research outputs found

    Hydrogel‐Enabled Transfer‐Printing of Conducting Polymer Films for Soft Organic Bioelectronics

    Full text link
    The use of conducting polymers such as poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) for the development of soft organic bioelectronic devices, such as organic electrochemical transistors (OECTs), is rapidly increasing. However, directly manipulating conducting polymer thin films on soft substrates remains challenging, which hinders the development of conformable organic bioelectronic devices. A facile transfer‐printing of conducting polymer thin films from conventional rigid substrates to flexible substrates offers an alternative solution. In this work, it is reported that PEDOT:PSS thin films on glass substrates, once mixed with surfactants, can be delaminated with hydrogels and thereafter be transferred to soft substrates without any further treatments. The proposed method allows easy, fast, and reliable transferring of patterned PEDOT:PSS thin films from glass substrates onto various soft substrates, facilitating their application in soft organic bioelectronics. By taking advantage of this method, skin‐attachable tattoo‐OECTs are demonstrated, relevant for conformable, imperceptible, and wearable organic biosensing.The use of hydrogels enables transfer‐printing of poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate thin films from glass substrates onto various soft substrates. Taking advantage of this technique, skin‐attachable organic electrochemical transistors (OECTs) are fabricated on commercially available tattoo paper. Wearable tattoo‐OECTs are further demonstrated with the integration of a wireless readout system.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154307/1/adfm201906016.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154307/2/adfm201906016_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154307/3/adfm201906016-sup-0001-SuppMat.pd

    Bees in China: A Brief Cultural History

    Get PDF

    Retrieval of the thickness of undeformed sea ice from simulated C-band compact polarimetric SAR images

    Get PDF
    In this paper we introduce a parameter for the retrieval of the thickness of undeformed first-year sea ice that is specifically adapted to compact polarimetric (CP) synthetic aperture radar (SAR) images. The parameter is denoted as the “CP ratio”. In model simulations we investigated the sensitivity of the CP ratio to the dielectric constant, ice thickness, ice surface roughness, and radar incidence angle. From the results of the simulations we deduced optimal sea ice conditions and radar incidence angles for the ice thickness retrieval. C-band SAR data acquired over the Labrador Sea in circular transmit and linear receive (CTLR) mode were generated from RADARSAT-2 quad-polarization images. In comparison with results from helicopter-borne measurements, we tested different empirical equations for the retrieval of ice thickness. An exponential fit between the CP ratio and ice thickness provides the most reliable results. Based on a validation using other compact polarimetric SAR images from the same region, we found a root mean square (rms) error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval procedure when applying it to level ice between 0.1 and 0.8m thick

    A Small Ship Target Detection Method Based on Polarimetric SAR

    No full text
    The detection of small fishing ships is very important for maritime fishery supervision. However, it is difficult to detect small ships using synthetic aperture radar (SAR), due to the weak target scattering and very small number of pixels. Polarimetric synthetic aperture radar (PolSAR) has been widely used in maritime ship detection due to its abundant target scattering information. In the present paper, a new ship detector, named ΛM, is developed based on the analysis of polarization scattering differences between ship and sea, then combined with the two-parameter constant false alarm rate method (TP-CFAR) algorithm to conduct ship detection. The goals of the detector construction are to fully consider the ship’s depolarization effect, and further amplify it through sliding window processing. First, the signal-to-clutter ratio (SCR) enhancement performance of ΛM for ships with different lengths ranging from 8 to 230 m under 90 different combinations of windows are analyzed in detail using three set of RADARSAT-2 quad-polarization data, then the appropriate window size is determined. In addition, the SCR enlargement between ΛM and some typical polarization features is compared. Among these, for ships of length greater than 35 m, the average contrast of ΛM is 33.7 dB, which is 20 dB greater than that of the HV channel. For small vessels of length less than 16 m, the average contrast of ΛM is 16 dB higher than that of HV channel on average. Finally, the RADARSAT-2 data including nonmetallic small vessels are used to perform ship detection tests, and the detection ability for conventional and small ships of some classic algorithms are compared and analyzed. For large vessels of length greater than 35 m, the method proposed in this paper is able to obtain a superior detection result, maintain the ship contour well, and suppress false alarms caused by the cross side lobe in the SAR image. For small vessels of length less than 16 m, the method proposed in this paper can reduce the number of missed targets, while also obtaining superior detection results, especially for small nonmetallic vessels

    Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance

    No full text
    Synthetic Aperture Radar (SAR), an important earth observation sensor, has been used in a wide range of applications for land and marine surveillance. Polarimetric SAR (PolSAR) can obtain abundant scattering information of a target to improve the ability of target detection, classification, and quantitative inversion. In this paper, the important role of PolSAR in ocean monitoring is discussed with factors such as sea ice, ships, oil spill, waves, internal waves, and seabed topography. Moreover, the future development direction of PolSAR is put forward to get an inspiration for further research of PolSAR in marine surveillance applications

    Observations of Reflected Internal Solitary Waves near the Continental Shelf of the Dongsha Atoll

    No full text
    Internal solitary waves (ISWs) near the Dongsha Atoll in the northern South China Sea (SCS) can be divided into incident, reflected, and refracted waves. Compared with the incident and refracted ISWs, the reflected ISWs are less likely to appear, but their impact on the ecological environment and marine activity should not be underestimated. In this work, field experiments were performed and moderate-resolution imaging spectroradiometer (MODIS) images were collected to analyze the reflected ISWs. Satellite observations showed that they were excited by the collision between the incident ISWs and the Dongsha Atoll and are often in the form of a wave packet composed of 2 to 5 solitons. During propagation, its spatial range gradually increases and interacts with the incoming waves generated by the next tidal cycle until it dissipates at approximately 117.5° E. Eighty percent of the reflected ISWs occur from April to June. The length of the crest line is mainly between 50 and 150 km, and the average propagation speed is approximately 1.57 m/s, which is smaller than that of the incident ISWs. In situ observations showed that the amplitudes of the reflected ISWs were between 10 and 20 m, accounting for only 40% of the incident ISWs. Compared with the incident ISWs, the vertical, velocity, and zonal velocities of the reflected ISWs were all attenuated. The results of the depth-integrated horizontal energy flux calculation showed that the energy of the reflected ISWs was only 61% of that of the incident ISWs. The reflected ISWs accelerated the velocity of the surface flow field during propagation, and the maximum velocity on the sea surface was approximately 0.60 m/s. Strong tides are beneficial for the generation of reflected ISWs near the Dongsha Atoll. Incident and reflected ISWs are all first-mode ISWs

    Underwater Topography Detection and Analysis of the Qilianyu Islands in the South China Sea Based on GF-3 SAR Images

    No full text
    Shallow sea underwater topography plays an important role in the development of islands and reefs. The Qilianyu Islands, located in Xisha, South China Sea, are a key area for the development and utilization of the South China Sea. Compared with traditional underwater topography detection methods, synthetic aperture radar (SAR) has the advantages of low cost, short time consumption, and the large-scale detection of shallow water topography. The GF-3 satellite is the first SAR satellite launched by China, and its ability to probe shallow sea topography has never been assessed. To detect the underwater topography of the Qilianyu Islands and test the application of GF-3 SAR data in shallow sea underwater topography detection, this paper implements the SAR shallow sea underwater topography detection model, the tidal information corresponding to the imaging time of the SAR image, and six GF-3 SAR images to detect the underwater topography of the Qilianyu island and reefs. The detection results have been analyzed from different imaging times, different water depths and different polarization modes, and the first four SAR images show promising detection results. The average absolute error (MAE) and average relative error (MRE) of the results are 1.5 m and 14.33%, respectively, which demonstrates that GF-3 SAR images have an impressive performance in underwater topography detection of South China Sea island reefs

    Analysis of Ku- and Ka-Band Sea Surface Backscattering Characteristics at Low-Incidence Angles Based on the GPM Dual-Frequency Precipitation Radar Measurements

    No full text
    The co-located normalized radar backscatter cross section measurements from the Global Precipitation Measurement (GPM) Ku/Ka-band dual-frequency precipitation radar (DPR) and sea surface wind; wave and temperature observations from the National Data Buoy Center (NDBC) moored buoys are used to analyze the dependence and sensitivity of Ku- and Ka-band backscatter on surface conditions at low-incidence angles. Then the potential for inverting wind and wave parameters directly from low-incidence σ0 measurements is discussed. The results show that the KaPR σ0 is more sensitive to surface conditions than the KuPR σ0 overall. Nevertheless; both the KuPR σ0 and KaPR σ0 are strongly correlated with wind speed (U10) and average wave steepness (δa) with the exception of specific transitional incidence angles. Moreover, U10 and δa could be retrieved from pointwise σ0 near nadir and near 18°. Near 18°; wind direction information is needed as the effect of wind direction on σ0 becomes increasingly significant with incidence angle. To improve the performance of U10 retrieval; especially for low U10; auxiliary δa information would be most helpful; and sea surface temperature is better taken into account. Other wave parameters; such as significant wave height; wave period and wave age; are partly correlated with σ0. It is generally more difficult to retrieve those parameters directly from pointwise σ0. For the retrieval of those wave parameters; various auxiliary information is needed. Wind direction and wave direction cannot be retrieved from pointwise σ0

    Surface waves in a vertically excited circular cylindrical container

    No full text
    The nonlinear free surface amplitude equation, which has been derived from the inviscid fluid by solving the potential equation of water waves with a singular perturbation theory in a vertically oscillating rigid circular cylinder, is investigated successively in the fourth-order Runge-Kutta approach with an equivalent time-step. Computational results include the evolution of the amplitude with time, the characteristics of phase plane determined by the real and imaginary parts of the amplitude, the single-mode selection rules of the surface waves in different forced frequencies, contours of free surface displacement and corresponding three-dimensional evolution of surface waves, etc. In addition, the comparison of the surface wave modes is made between theoretical calculations and experimental measurements, and the results are reasonable although there are some differences in the forced frequency

    Effects of Wave-Induced Doppler Velocity on the Sea Surface Current Measurements by Ka-Band Real-Aperture Radar with Small Incidence Angle

    No full text
    The Doppler shift of microwave radar sea surface echoes serves as the foundation for sea surface current field retrieval; it includes the shift caused by satellite platform motion, ocean waves, and sea surface currents. The Doppler shift caused by ocean waves is known as the wave-induced Doppler velocity (UWD), and its removal is critical for the accurate retrieval of sea surface current fields. The low-incidence Ka-band real-aperture radar rotary scan regime has the capability of directly observing wide-swath two-dimensional current fields, but as a new regime to be further explored and validated, simulation and analysis of UWD in this regime have a significant influence on the hardware design and currently observed applications of this satellite system in its conceptual stage. In this study, we simulated and investigated the impacts of radar parameters and sea-state conditions on the UWD obtained from small-incidence-angle Ka-band rotational scanning radar data and verified the simulation results with the classical analytical solution of average specular scattering point velocity. Simulation results indicate that the change in the azimuth direction of platform observation affects UWD accuracy. Accuracy is the lowest when the antenna is in a vertical side-view. The UWD increases slowly with the incidence angle. Ocean waves are insensitive to polarization in the case of small-incidence-angle specular scattering. The increase in wind speed and the development of wind waves result in a substantial increase in UWD. We classified swell by wavelength and wave height and found that UWD increases with swell size, especially the contribution of swell height to UWD, which is more significant. The contribution of the swell to UWD is smaller than that of wind waves to UWD. Furthermore, the existence of sea surface currents changes the contribution of ocean waves to UWD, and the contribution weakens with increasing wind speed and increases with wind wave development
    • …
    corecore