425 research outputs found

    Fractional variational calculus for nondifferentiable functions

    Get PDF
    We prove necessary optimality conditions, in the class of continuous functions, for variational problems defined with Jumarie's modified Riemann-Liouville derivative. The fractional basic problem of the calculus of variations with free boundary conditions is considered, as well as problems with isoperimetric and holonomic constraints.Comment: Submitted 13-Aug-2010; revised 24-Nov-2010; accepted 28-March-2011; for publication in Computers and Mathematics with Application

    Oscillation of Non-Linear Systems Close to Equilibrium Position in the Presence of Coarse-Graining in Time and Space

    Get PDF
    One considers the motion of nonlinear systems close to their equilibrium positions in the presence of coarse-graining in time on the one hand, and coarse-graining in time on the other hand. By considering a coarse-grained time as a time in which the increment is not dt but rather (dt)c > dt, one is led to introduce a modeling in terms of fractional derivative with respect to time; and likewise for coarse-graining with respect to the space variable x. After a few prerequisites on fractional calculus via modified Riemann-Liouville derivative, one examines in a detailed way the solutions of fractional linear differential equations in this framework, and then one uses this result in the linearization of nonlinear systems close to their equilibrium positions

    Extending the D'Alembert Solution to Space-Time Modified Riemann-Liouville Fractional Wave Equations

    Full text link
    In the realm of complexity, it is argued that adequate modeling of TeV-physics demands an approach based on fractal operators and fractional calculus (FC). Non-local theories and memory effects are connected to complexity and the FC. The non-differentiable nature of the microscopic dynamics may be connected with time scales. Based on the Modified Riemann-Liouville definition of fractional derivatives, we have worked out explicit solutions to a fractional wave equation with suitable initial conditions to carefully understand the time evolution of classical fields with a fractional dynamics. First, by considering space-time partial fractional derivatives of the same order in time and space, a generalized fractional D'Alembertian is introduced and by means of a transformation of variables to light-cone coordinates, an explicit analytical solution is obtained. To address the situation of different orders in the time and space derivatives, we adopt different approaches, as it will become clear throughout the paper. Aspects connected to Lorentz symmetry are analyzed in both approaches.Comment: 8 page

    Fractional Variational Iteration Method for Fractional Nonlinear Differential Equations

    Get PDF
    Recently, fractional differential equations have been investigated via the famous variational iteration method. However, all the previous works avoid the term of fractional derivative and handle them as a restricted variation. In order to overcome such shortcomings, a fractional variational iteration method is proposed. The Lagrange multipliers can be identified explicitly based on fractional variational theory.Comment: 12 pages, 1 figure

    Emergence of order in selection-mutation dynamics

    Full text link
    We characterize the time evolution of a d-dimensional probability distribution by the value of its final entropy. If it is near the maximally-possible value we call the evolution mixing, if it is near zero we say it is purifying. The evolution is determined by the simplest non-linear equation and contains a d times d matrix as input. Since we are not interested in a particular evolution but in the general features of evolutions of this type, we take the matrix elements as uniformly-distributed random numbers between zero and some specified upper bound. Computer simulations show how the final entropies are distributed over this field of random numbers. The result is that the distribution crowds at the maximum entropy, if the upper bound is unity. If we restrict the dynamical matrices to certain regions in matrix space, for instance to diagonal or triangular matrices, then the entropy distribution is maximal near zero, and the dynamics typically becomes purifying.Comment: 8 pages, 8 figure

    Variational Problems with Fractional Derivatives: Euler-Lagrange Equations

    Full text link
    We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense

    Entropic trade-off relations for quantum operations

    Full text link
    Spectral properties of an arbitrary matrix can be characterized by the entropy of its rescaled singular values. Any quantum operation can be described by the associated dynamical matrix or by the corresponding superoperator. The entropy of the dynamical matrix describes the degree of decoherence introduced by the map, while the entropy of the superoperator characterizes the a priori knowledge of the receiver of the outcome of a quantum channel Phi. We prove that for any map acting on a N--dimensional quantum system the sum of both entropies is not smaller than ln N. For any bistochastic map this lower bound reads 2 ln N. We investigate also the corresponding R\'enyi entropies, providing an upper bound for their sum and analyze entanglement of the bi-partite quantum state associated with the channel.Comment: 10 pages, 4 figure

    Random-time processes governed by differential equations of fractional distributed order

    Full text link
    We analyze here different types of fractional differential equations, under the assumption that their fractional order ν(0,1]\nu \in (0,1] is random\ with probability density n(ν).n(\nu). We start by considering the fractional extension of the recursive equation governing the homogeneous Poisson process N(t),t>0.N(t),t>0.\ We prove that, for a particular (discrete) choice of n(ν)n(\nu), it leads to a process with random time, defined as N(T~ν1,ν2(t)),t>0.N(% \widetilde{\mathcal{T}}_{\nu_{1,}\nu_{2}}(t)),t>0. The distribution of the random time argument T~ν1,ν2(t)\widetilde{\mathcal{T}}_{\nu_{1,}\nu_{2}}(t) can be expressed, for any fixed tt, in terms of convolutions of stable-laws. The new process N(T~ν1,ν2)N(\widetilde{\mathcal{T}}_{\nu_{1,}\nu_{2}}) is itself a renewal and can be shown to be a Cox process. Moreover we prove that the survival probability of N(T~ν1,ν2)N(\widetilde{\mathcal{T}}_{\nu_{1,}\nu_{2}}), as well as its probability generating function, are solution to the so-called fractional relaxation equation of distributed order (see \cite{Vib}%). In view of the previous results it is natural to consider diffusion-type fractional equations of distributed order. We present here an approach to their solutions in terms of composition of the Brownian motion B(t),t>0B(t),t>0 with the random time T~ν1,ν2\widetilde{\mathcal{T}}_{\nu_{1,}\nu_{2}}. We thus provide an alternative to the constructions presented in Mainardi and Pagnini \cite{mapagn} and in Chechkin et al. \cite{che1}, at least in the double-order case.Comment: 26 page
    corecore