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An Approach, Via Entropy, to the 
Stability of Random Large-Soale 
Sampled-Data Systems Under 
Structural Perturbations1 

The concept of entropy in information theory is used to investigate the sensitivity 
and the stability of sampled-data systems in the presence of random perturbations. 
After a brief background on the definition, the practical meaning and the main 
properties of the entropy, its relations with asymptotic insensitiveness are exhibited 
and then some new results on the sensitivity and the stochastic stability of linear and 
nonlinear multivariate sampled data systems are derived. A new concept of 
stochastic conditional asymptotic stability is obtained which seems to be of direct 
application in the analysis of large-scale systems. Sufficient conditions for stability 
are stated. This approach provides a new look over stochastic stability. In addition, 
variable transformations act additively on entropy, via Jacobian determinant, and 
as a result the corresponding calculus is very simple. 

1 Introduction 

When a control system is designed to follow a given 
trajectory, referred to as optimal by the designer, a problem 
of importance is to analyze what happens when, because of 
some accidental reasons, the system deviates from this op­
timal trajectory. After the external disturbance vanishes, will 
the deviation increase with time, or on the contrary, will it 
decrease in such a manner that the system will again follow 
the optimal trajectory? 

This problem, of course, is well known. When the external 
disturbance affects directly the state of the system, we have a 
problem of stability; when it affects the parameter of the 
system, we then deal with structural stability, or else rough 
stabilty, sensitivity, robustness, etc. Although these problems 
have slightly a different meaning from each other, their 
essential content is the same. Considerable amount of effort 
has been devoted to these questions in the deterministic 
framework and the corresponding literature is by now 
standard. 

The problem is quite different in the stochastic framework, 
for instance in large-scale computerized systems subject to 
random disturbances, which are of increasing importance in 
practical applications. At the present state-of-art it seems that 
the most direct approach would be to combine the stability 
theory for large-scale systems (see for instance Siljak [1]) with 
the stochastic stability theory as described by Kushner [2]. 
Both approaches extensively use Lyapunov functions so that 
the synthesis should be direct. In the same way, it seems that 
the stability of large-scale systems with respect to random 
structural perturbations could be tackled by combining some 
results obtained by Siljak [3] in the deterministic case with the 
theory of stochastic Lyapunov functions. Another approach 
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could be to consider this problem as a problem of sensitivity 
in a statistical framework and to optimize a sensitivity 
criterion which depends explicitly upon the parameters of the 
system. Such approaches generally work with covariance 
matrices and they necessarily involve advanced results in the 
theory of stochastic differential equations. 

In this paper an alternative approach is developed by using 
information theory, and more especially the so-called entropy 
concept for a random variable. This entropy is defined by 
means of the probability density function of the variable only, 
and furthermore, it evolves monotonically with the variance, 
in such a manner that it can be valuably considered as a 
measure for the concentration or the randomness of the 
variable. The advantage of this approach is four-fold, (i) 
Transformation of variables merely increases the entropy via 
the corresponding Jacobian determinant, so that the calculus 
as well as the theoretical framework is very simple; (ii) it 
provides a new look at the questions of stochastic sensitivity 
and stochastic stability; (iii) it seems of valuable utilization in 
the study of large-scale systems; (iv) and finally it exhibits 
some new relations between information theory and control 
systems. 

Due to the prospect of a bright future for distributed 
computer networks in control systems, we herein restrict 
ourselves to the study of sampled data control systems. First, 
for the reader who is not acquainted with information theory, 
we recall the definition and the main properties for the en­
tropy, which are sufficient to read the paper. Then we analyze 
the sensitivity of linear sampled data systems with respect to 
disturbances on their state and their control and applications 
of the results to stability are considered. We then arrive at the 
new concept of stochastic conditional asymptotic stability 
which appears to be of direct application in connective 
stability. Nonlinear systems are considered. 

The proofs of the propositions are given in the main text as 

Journal of Dynamic Systems, Measurement, and Control MARCH 1982, Vol. 104/49 
Copyright © 1982 by ASMEDownloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



they may help to the meaning of the results, but the reader 
may drop them at first reading without loss of continuity. 
2 Background on Entropy 

In this section, we shall recall only those definitions and 
properties of entropy, which we shall need for our purpose. 

2.1 Uncertainty and Entropy. Consider a random vector X 
e (R" with the probability density functionp(x); and assume 
that X is the output of a certain random experiment E. 
Assume just prior to perform E, an observer R tries to guess 
the value of the output which he will obtain after making E. R 
is thus facing with a certain amount of uncertainty so involved 
by X, and the problem is to define a possible measure for this 
uncertainty. 

In mathematical statistics, it is common to use the standard 
deviations of X or the covariance matrix of X as such a 
measure. In the framework of information theory, Shannon 
[4, 5] proposed to define this uncertainty by means of the so-
called entropy H(X) defined as 

H(X) : = - ^np(xnnp(x)dx 

(the Algol-Pascal-like symbol : = means that the left-hand 
side term is defined by the right-hand side one). We herein 
consider the natural logarithm, but any other basis may be 
used since it is then equivalent to multiply (2.1) by a positive 
scaling factor. 

In a more general framework, see for instance Aczel and 
Daroczy [6], Renyi obtained a quantitative measure for 
uncertainty in the form of the u-entropy Ha (X) defined as 

Ha (X): = - * - In ( p* (x) dx (2.2) 

where a e (R is such that a > 0 and a ^ 1. a may take on any 
positive value different from the unity, but it has been shown 
[7] that only 0 < a < 1 is meaningful from a practical 
standpoint, since then Ha (X) represents a loss of in­
formation with regard to H(X). 

2.2 Some Properties of the Entropy. 

(i) One has 

lim Ha(X)=H(X), 
a~[ 

(2.3) 

in other words, the Shannon entropy is the limiting form of 
the Renyi entropy. As a result, if we define 

H{(X):=H(X), (2.4) 

we can then work with Ha (X) only, in the following. 
(ii) Ha (X) may be positive or negative. The higher Ha (X) 

is, the more X is distributed over (Jt"; the lower Ha (X) is, the 
more X tends to be concentrated in (R". Ha (X) is an index 
for the homogeneity, or again the uniformness of the 
probability distribution of X. 

(iii) Assume that Ha (X) is defined with any logarithm 
denoted by log, and assume that A" is a one-dimensional 
Gaussian variable XN with the mean value ^ and the standard 
deviation a; then one has 

(2.5) 

H(XN) =log„oV2ire. (2.6) 

If we now assume that X is an n-dimensional Gaussian vector 
XN„ with the probability density 

Ha (XN) =logaoV2^r + (log0Va) / ( a - l ) , a * 1 

(2.1) g(x) : = (27r) 

exp(-i-(*-^)r £(*-,,)) (2.7) 

where IEI denotes the absolute value of the determinant of 
the covariance matrix E and where the superscript denotes the 
transpose, we have 

Ha(XNt„)=\oga (2TT) 

+ (log0(a) 2 ) / ( a - l ) , a * l (2.8) 

L " 
H(XK„ ) =log„ ( | D | 2 ( 2 7 r e ) T ) (2.9) 

These equations make clear, in the special case of Gaussian 
variables, how the entropy Ha(XNn) is related to the 
variances, 

(iv) If Xand y denote two random vectors, one has 

Ha(X+Y)<Ha(X)+Ha(Y). (2.10) 

N o m e n c l a t u r e 

The numbers in parentheses refer to 
the equation where the symbol first 
appears. 

x = e <Rn, deterministic 
state of the system, 
(2.1) 

X = e (R'\ stochastic 
state of the system, 
(2.1) 

H(X) = Shannon entropy of 
the random variable 
* , (2 .1) 

Ha (X) = Renyi entropy of X, 
(2.2) 

^N,n 

XN 

a 

= n-dimensional 
Gaussian 
(2.7) 

= Gaussian 
(2.5) 

= variance, 

variable, 

variable 

,2.5) 

E 

IEI 

(x)/D(y)\ 

£ ( • ) 

rx 

rx 

k 
T 

u(k) 

A(k) 

= covariance matrix, 
(2.7) 

= absolute value of the 
determinant of E, 
(2.7) 

= Jacobian of the 
transformation x — 
J', (2.13) 

= mathematical ex­
pectation of (•), 
(3.1) 

= component of x in 
<Ar,r < n 

= component of X in 
(Rr,r<n, (3.5) 

= holds for kT, (3.1) 
= constant sampling 

period 
= e (Rm, control of the 

system, (4.1) 
= («, n) matrix, (4.1) 

(n, m) matrix, (4.1) 
transition matrix, 
(4.2) 

det(-) = determinant of the 
matrix (•), (4.6) 
(«, n)-matrix, (4.9) 
mat r ix - t ranspose , 

B(k) 
* ( * 2 . * l ) 

C(k) 
AT 

(4.14) 
x* (k) = nominal trajectory 
y(k) = cos ta te of the 

system, (4.14) 
A(k) = (n, «) r a n d o m 

matrix associated 
with^4(A:),(7.1) 

dij(k) = c o e f f i c i e n t s of 
A(k),(1.2) 

tr(-) = trace of the matrix 
(•) 

f(x) = nonlinear vector (/i, 
/ 2 , . . . / „ ) r , ( 9 . 1 ) 
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Likewise, by substituting integral for summation, if X, is a 
time dependent random vector, one has 

Ha ( £ X7dr)< £ Ha (X7)dr (2.11) 

(v) If X is a random vector and z a deterministic one, one 
has 

Ha{X+z)=Ha(X) (2.12) 

(vi) The a-entropy is related to the variance, and it increases 
from - oo to + oo as I £ I varies from 0 to oo. 

2.3 Substitution of Variable. The following result will be 
useful in the following. 

Result. Assume that the random «-vector A'is itself derived 
from the random H-vector Y by the change of variable X = 
g( Y); where g : (R" — (R" is a continuous mapping. Let q{y) 
and D(x)/D(y) denote the probability density function of Y 
and the Jacobian of the transformation, respectively. Then 
one has 

Ha (X) = 
1 

1 - a 
-In 

Jffi" 4"{y) 
D(x) 

dy. (2.13) 
D(y) 

Proof, (i) Let p(x) denote the probability density of X. 
Then the equality 

D(x) 
\<Rnp(x)dx=l„p(g(y) 

D(y) 
dy 

= 1 
directly yields 

q{y)=p(g(y))\(D(x)ID(y))\ 

Now we make the substitution x = g(y) in the expression of 
Ha (X) to get 

Ha(X)^-^—ln\ np
a(x)dx 

1 — a Jffl 

1 - a J<R" 
pa(g(y)) 

D(x) 

D(y) 
dy 

1 - a 
• In 

1 
In 

teCv); 
D(x) 

D(y) 
dy 

00 
D(x) 

D(y) 
dy 

2.4 On the Practical Meaning of the Entropy. In the special 
case of the one dimensional Gaussian variable, equation (2.5) 
makes clear how the a-entropy is related to the variance o2. 
For non-Gaussian variables, this dependence is not so much 
explicit, but it nevertheless remains transparent: Ha {X) and a 
vary in the same way, and Ha (X) decreases to - oo as a 
decreases to zero. 

The same remark holds for M-dimensional random vectors 
and their covariance matrix E, but here a word of caution is in 
order. The condition Ha (X) 1 - oo means that X converges to 
a random vector whose distribution is concentrated on a set of 
measure zero in (Rn; in other words, this limit can be a ran­
dom vector, but distributed in a subspace (R", 1 < r < n, of 
(R". As a result, we are led to introduce the following 
definition. 

Definition 2.1. The «-random vector X e (R" is said to have 
a concentration of order r, (/--concentration in the following), 
if it is distributed in a subspace <SV of (R". 

Ha can be taken as a measure of the w-concentration of X. 
This measure is not absolute since it is not defined for a = 0, 
but it can be considered as a relative measure which provides 
comparisons between the concentrations of two distinct 
variables X and Y. Likewise, if we are interested in the r-

concentration of X related to a given r-subspace, then we shall 
consider the a-entropy Ha (Xr) of the corresponding r-
component of X. 

2.5 A Few Comments. On a theoretical standpoint, it 
suffices to modify the probability density p(x) by adding a 
Dirac delta distribution to get H(X) = — oo, so that H(X) 
may appear not satisfactory to characterize stochastic con­
vergence in any way. 

Fortunately, such a situation does not occur in practical 
situations. Indeed, in most cases, dynamical systems are such 
that the corresponding density p(x, t) does satisfy functional 
equations which themselves imply relatively stringent con­
tinuity conditions for p(x, t), therefore strong continuity 
conditions for any variation bp(x, t). For instance, if x, e (R is 
defined by an Ito stochastic differential equation, p (x, t) is 
then the solution of a Fokker-Planck-Kolmogorov equation. 
From a physical point of view, this somewhat insensitiveness 
merely means that the system does not react to disturbances 
concentrated on a set with zero measure. 

These are exactly similar considerations which justify the 
utilization of differential geometry to analyze the structural 
stability of dynamical systems. 

It is rare to get a closed form expression for the entropy of a 
random variable, except for some specific distributions such 
as the Gaussian law, the Poisson law, or the uniform law, for 
instance. But in fact we need only the explicit expression for 
the variation of the entropy, and this can be obtained easily. 
Indeed, a transformation on the random variable X results 
into an increment in H(X), and this increment is simply 
defined by means of the Jacobian of the transformation in 
question. 

In other words, even though we do not have explicit ex­
pression for H(X), we can analyze its variations, and it is the 
basic remark which supports the approach. 

We shall further point out that the same remark applies to 
the utilization of the thermodynamical entropy in physics: we 
deal only with its variations! 

3 Asymptotic Insensitiveness 

Assume that a deterministic sampled data system is 
designed to yield a certain nominal trajectory x* (k) (k 
denotes the discrete time) which is considered as being op­
timal, in some sense to the designer. Assume now that, when 
it runs, this system may be subject to some accidental 
disturbances either in the form of variations of its structural 
parameters or in the form of external inputs. If these 
disturbances are random, then x*(k) becomes the random 
variable X(k): = x* (k) + 8X(k) where 8X(k) denotes the 
deviation of X(k) from its reference value x*(k). Well 
obviously, it is desirable that the effects of this disturbance 
vanish with time. In a statistical framework, it is common to 
express this requirement with the following equations 

lim E(X(k))=x*(k) ,k-<x> (3.1) 

lim E((X(k)-x*(k)))2=0 ,k-><x> (3.2) 

where the symbol E(-) holds for the mathematical ex­
pectation. This is the convergence in the mean square sense. 

In information theory, consider the requirements 

lim E(X(k))=x*(k) ,k~°o (3.3) 

H(X(k))\-o= ,Ar-oo; (3.4) 

according to the above remark, X(k) will converge to a 
random variable which is concentrated in (R". More generally, 
if we consider condition (3.4) applied to the component of 
X(k) in a given subspace (Rr, we shall have the r-
concentration of X(k) in (Rr, therefore the following 
definition. 

Definition 3.1. Assume that the random vector X{k) is the 

Journal of Dynamic Systems, Measurement, and Control MARCH 1982, Vol. 104/51 
Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



result of a random disturbance Dn applied to the deterministic 
vector x* (k). Let (Ry denote a given subspace of <R", and let 
rx(k) and rx* (k) denote the corresponding components of 
X(k) and x* (k), respectively. We shall say that X(k) has the 
property of asymptotic insensitiveness in (Rj" (A.I. in the 
following) w.r.t. the nominal value x* (k) and the disturbance 
Dn, whenever the following conditions are satisfied: 

lim E{rx(k))=rx(k) , / t -oo (3.5) 

H(rx(k))l = -a° ,k-<x (3.6) 

Definition 3.2. Framework of Definition 3.1. Xk is said to 
have the property of asymptotic insensitiveness of order r, r-
A.I. in the following, whenever it is asymptotically insensitive 
in every subspace (Rj of (R". 

Remark of Importance. Assume that the vector X : = (Xl, 
x2, . . . ,x„)T is random by its first component Xx only, then 
the conditions of A.I. in <R" guarantees the convergence of A" 
to a deterministic variable. Assume now that X : = (Xx, 
x2, . . . ,X„) is random on the two components Xx and X„ 
only. Then we can partition X as X : = QX, 2X) : = 
((Xt, . . . ,Xj), (xj+], . . . ,X„))T and the conditions of A.I. 
for ' X a n d 2X, respectively, will ensure the convergence of X 
to a deterministic variable. 

This remark is of practical interest for the applications, 
since in distributed computerized systems, it may happen that 
only a few lines are subject to external disturbances. 
4 Analysis of Linear Sampled Data Systems 

In this section, we shall analyze the sensitivity of linear 
sampled data systems w.r.t. their initial states and w.r.t. 
additive disturbing noises. 

4.1 Definition of the System. 
The system is described by the equations 

x(k+l)=A(k)x(k)+B(k)u(k) (4.1) 

x(0) = x0, given initial state 

with the following definitions. x(k) holds for x(kT) where k 
denotes an integer and Tdenotes the sampling period; x(k) e 
<R" is the state of the system; u(k) := u(kT) e <R'" is the 
input of the system; A (k) : = A (kT) is the (n, ri) transition 
matrix, B(k) : = B(kT) is an («, m) matrix. A (k) and B(k) 
may depend explicitly upon k or they may not. x(k + m) is 
then related to x(k) by the equation 

x(k + m) = <i>(k+m,k)x(k) + 

m-\ 

+ ^^(k+m,k+i+l)B(k+i)u(k+i) (4.2) 
7 = 0 

with 

i(k2,kl):=A(k2 -l)-A(k2 -2). . .A(kl+l)A(ki),k2>ki 

(4.3) 
Equations (4.1)-(4.3) hold even when the sampling period Tis 
not constant. In the special case where the sampling period is 
constant and the system is time invariant, then A(k) = A, 
B(k) =B and one has 

m 

x(k+m)=A'"x(k)+ YtA'~lB u(k + m-i) (4.4) 
;'=1 

or else, by putting kx := k + m andy : = k + m — u, 

* i - ' 

x(kl) = Aki-kx(k)+ J ] Aki-J~lBu(j) (4.5) 
y = * 

4.2 Sensitivity w.r.t. Disturbances on the State. We now 
consider the following problem. 

Problem 4J. Assume that the system (4.1) is designed to 

follow a certain trajectory x* (k) considered as a reference. 
Assume further that at a given instant p it is subject to a 
random disturbance which moves the system state from the 
reference x*(p). The question we ask is under which con­
ditions the effects of this disturbance will vanish, and the 
system will tend to follow the nominal trajectory x* (k)l We 
have the following result. 

Proposition 4.1. Assume that the system (4.1) is subject to a 
random disturbance on the state x* (p) at the instant/?. Then 
the a-entropy Ha (X(p + m)) of the future random state 
X(p + m) satisfies the equation 

Ha (X(p + m + \)) = Ha (X(p + m)) 

+ lnldet .4(p + w ) l , (4.4) 

and the system is asymptotically insensitive in (R", w.r.t. the 
nominal trajectory x*{k) and the random disturbance, 
provided that the following conditions are satisfied, for every 
m > 0 . 

E{X(p)]=x*(p) (4.5) 

\detA(p + m)\<l (4.6) 

Proof, (i) Condition (4.5) is equivalent to condition (3.5) in 
the present special case. 

(ii) This being so, equations (4.2) on the one hand and 
(2.12) on the other hand yield 

Ha (X(p + m)) =Ha Ci>{p + m,p)X(p)) 

whereX(p + m) denotes the new random state at (p + m). 
(hi) The Jacobian of the transformation X(p) — X(p + 

m) is det $(p + m, p). Let q(x) denote the probability 
density function of X(p); equation (2.13) yields 

Ha(X(p + m))= In „ qa (x) \ det <f>(p + m,p)\dx 
1 - a Jot" 

= lnl det $(p + m,p)\+Ha(X(p)) (4.7) 

(iv) Next, combining this result with the definition (4.3) for 
*(»), we get 

Ha (X(p + m + 1))-Ha (X(p + m)) =\ii\ det A (p + m) I 

(4.8) 

The system will be A.I. provided that this decrement is 
negative for every m > 0, therefore the result. 

4.3 Sensitivity w.r.t Disturbances on the Control. 
Problem 4.2. We now assume that the above system (4.1) is 

disturbed by an additive continuous random noise W(k) e 
(Rn, in such a way that its equation is 

X(k+ \)=A(k)X(k) +B(k)u(k) +C(k) W(k) (4.9) 

where C(k) denotes an (n, n) matrix. This disturbance 
occurs, starting a given instant p; it may be permanent or else 
volatile, in which case it is then equivalent to assume that 
C(k) vanishes after a certain range of time. Again we ask the 
question under which condition the system will reach and 
follow its reference trajectory x* (k) ? 

Let Ha (W{k)) denote the a-entropy of W(k); we state: 

Proposition 4.2. The system (4.9) is asymptotically in­
sensitive, in <R", w.r.t. the nominal trajectory x* (k) and the 
random noise C(k)W(k), C(k) = 0 for k < p, provided 
that the following conditions are satisfied; for every k > p: 

E{W(k)]=0 (4.10) 

\detA(k)C(k)\<exp(-Ha{W(k))). (4.11) 

Proof, (i) According to condition (4.10), equation (4.9) 
yields 

E[X(k+ 1) =A (k)E{X(k) ] +B(k)u(k) 

therefore 
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E{X(k)]=x*{k),k>p. 

(ii) Now equations (2.12) and (4.9) provide 

Ha (X(k+ l)) = Ha (A{k)X(k)+C{k) fV(k)) 

therefore, by using equation (2.10), 

Ha (X(k+\))<Ha (A(k)X{k)) +Ha (C{k) W(k)) (4.12) 

(iii) A calculation similar to Step (iii), equation (4.7) in the 
proof of proposition 4.1, yields 

Ha (A (k)X(k)) +Ha (C(k) W(k)) =ln Idet A {k) I 

+ Ha (X(k)) +lnldet C(k) I +Ha (W(k)), 

and by substituting this result into (4.12) we get 

Ha (X (k + 1)) - Ha (X (k) )<\n\ det A (k)C(k)\ 

+Ha(W(k)) (4.13) 

The system will be A.I. provided that 

lnldetv4(Ar)C(Ar) I +Ha{W(k))<0 

therefore the result. 

Remark. If we desire stability w.r.t. the state and stability 
w.r.t. the control, then conditions (4.5, 6, 10, 11) should be 
simultaneously satisfied. 

A Direct Generalization. Assume that the system is 
disturbed in such a way that its equation takes the new form 

X(k+ l)=A(k)X(k) +B(k)u(k) +C, (k) Wx (k) 

+ C2(k)W2(k), (4.14) 

C, (k) = C2 (k) = 0, k < p. Then it is A.I. provided the 
following conditions are satisfied for k > p: 

E{Wl(k)}=0 (4.15) 

E{W2(k))=0 (4.16) 

ldetv4(Ar)C, (k)C2 (k) I < e x p ( - / / a ( Wx (k)) 

-Ha(W2(k)). (4.17) 

The proof is quite similar to that for proposition (4.2). 

4.4 Analysis of the Conjugate System. 

Problem 4.3. We consider the conjugate system associated 
with (4.1), in the form 

y(k+l) = Ar(k)y(k)+B(k)v(k) (4.18) 

y(0) =y0, given value 

We now assume that, at a given instant p, the conjugate 
system is subject to a random disturbance around the nominal 
trajectory y* (k) in such a way that the future state is a 
random state Y(k), k > p. Our purpose is to determine the 
relations which may exist between the sensitivities of the two 
systems. 

We have the following result. 

Proposition 4.3. Assume that at a given instant p the 
original system and the conjugate one are subject to random 
disturbances around their respective nominal references 
x* (p) and y* (p); and let Ha (X(p)) and Ha (Y(p)) denote 
the corresponding a-entropies. Then the future state X(p + 
m) and the costate Y(p + m) evolve in such a way that the 
equation 

Ha(X(p + m)) -Ha(Y(p + m)) =Ha(X(p)) 

-Ha(Y(p)). (4.19) 

is satisfied for every m 2 0. 

Proof. We duplicate the proof of proposition 4.1, and we 
take account of the relation 

Ha (Y(p + m)) =lnldet * ( p + m,p) I +Ha (Y(p)) . 

Now, comparing this result with equation (4.6) yields 

Ha (X(p + m) -Ha (X{p) ) = / / „ ( Y(p + m)) 

-Ha(Y(p)). (4.21) 

therefore equation (4.19) 

5 On the Meaning of These Results 

In this section, we state a few comments to make clear the 
practical significance of the above results. 

5.1 Asymptotic Insensitiveness and Component-Wise 
Convergence. The various determinants which appear in the 
above conditions, are essentially related to the amount of 
space where the disturbance is distributed. If this region is 
small, then the system is A.I. in (Rn. But this region may be 
small in (R", and not necessarily small in a given subspace of 
(R"; a plane has a zero bulk in (R3 but a nonzero area in (R2; in 
such a manner that the A.I. conditions in (R" do not imply the 
component-wise convergence, that is the convergence for all 
the components. If we want to be sure of the point-wise 
convergence, we must require that 

or else 

Ha (Xj (k))\- oo for every component Xj, k~ c 

'£(l/Ha(Xj(k)))W-,k-<x>. 

5.2 Conditional Asymptotic Insensitiveness. We now 
consider the A.I. condition (4.11) in proposition 4.2. It ex­
plicitly refers to the a-entropy Ha (W(k)) of the disturbing 
noise, and in this way, it can be thought of as defining a 
conditional asymptotic insensitiveness. For a given value of 
det A (k), the larger Ha ( W(k)) is, the smaller det C(k) is, 
but here again this ensures A.I. in (R" only. If we want 
pointwise A.I. we must consider the effect of the noise on 
each component taken one at a time. 

5.3 The Decomposition Approach. Assume that the 
disturbance applies on some components of x(p) only. Then 
we can partition the state vector x into the components ' x : = 
(xn,xl2 * t a l ) T , 2x: = (x2l, x22 x2„2) where we 
have renamed the components of the vector x in an obvious 
way. The dimensions of the two vectors xt, x2 are « j , n2 so 
that nx + n2 = n. This partition yields the system (4.1) in the 
form 

Au(k)Al2(k) 'x(fc-t-l) 

2x(k+l) A21(k) A22(k) 

lx(k) 

2x(k) 
+B(k)u(k). 

Idet {-AT)\ = \tetA\ 

to get the counterpart of equation (4.7) in the form 

(4.20) 

(5.1) 
The matrices An and A22 have the dimensions {n{, nx) and 
(«2. n2), respectively, while the matrices Al2, A2X have the 
dimensions («1( n2) and («2» «i). respectively. We have a 
decomposition into two subsystems Sx and S2, and 
proposition 4.1 together with proposition 4.2 apply. 

This being so, assume that the state x(p) is disturbed on 
one component of lx(p) and one component of 2x(p) only; 
then, according to the remark at the end of Section 3, it is 
sufficient to assure the A.I. of lx(k) and 2x(k), respectively, 
to get the convergence of X(k) to a deterministic variable. 

5.4 Asymptotic Insensitiveness and Mean-Square Con­
vergence. If a random variable X(k) t (R converges to the 
deterministic one x* (k) e (R in the mean square sense, then 
Ha (X(k)) 1 - oo. But the converse is not necessarily true. If 
Ha(X(k)) I -oo , this means only that the probability 
distribution of X(k) tends to be concentrated in (R, in other 
words, the limiting value of X(k) is a discrete random 
variable. It follows that, on a theoretical standpoint, 
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asymptotic insensitiveness is not quite equivalent mean-square 
convergence. 

Nevertheless, in a practical engineering framework, it is 
likely that the equivalence will hold since it is rather specific 
and unusual that continuous random variables converge to 
discrete random variables (while the converse is trivially 
common!). 

This is the basic reason why we introduced the new term of 
"asymptotic insensitiveness" rather than to utilize the 
concept of "asymptotic stochastic stability." 

6 Application to Stability Analysis 

In this section, we shall examine how can the above results 
be of use to analyze the stability of sampled-data systems. For 
the sake of simplicity, we shall explain the main features the 
approach with an introductory example, and then the 
generalization will be straightforward. 

6.1 An Introductory Example. Asymptotic insensitiveness 
and stability. We consider a two-dimensional system and we 
are interested in the study of its Lyapunov stability, L.S. in 
the following, w.r.t. the initial state. We assume that this 
system is time independent. By using a suitable change of 
coordinates, its equations are 

x1(Ar+l) = X,x1(A:) (6.1) 

x2(k+l) = \2x2(k) (6.2) 

and the nominal trajectory to be considered is x*(0) = 0. The 
system is A.I. in (R2 provided that I Xt X2 I < 1; in other 
words, one may have IX] I < 1, and IX21 > 1, and in such a 
case, the subsystem (6.1) is stable at 0 while the subsystem 
(6.2) is unstable at 0. The overall system is A.I. in (R2 but it is 
unstable at 0. It will be stable if and only if we have IX! I < 1 
and IX21 < 1. 

Derivation of Stability Conditions. We now consider the 
system defined by the equation 

x, ( * + l ) = a„ (*)*, (*) +al2(k)x2 (k) (6.3) 

x2(k+l) = a2l(k)xAk)+a22(k)x2(k). (6.4) 

If we assume that this system is A.I. in (R2, then it may be 
stable; but it may be unstable as well. If we want to be sure 
that it is also stable, we must require that both Ha (X{ (k)) 
and Ha(X2(k)) are uniformly decreasing, in other words 
that the subsystems S\ and S2 with the respective states xx and 
x2, both are A.I. 

A.I. conditions for Si are easy to obtain: it is sufficient to 
consider equation (6.3) as subject to a random disturbance on 
the initial state X[(0) and to the external disturbance 
andx2(k). Likewise for S2 via its equation (6.4). So ac­
cording to propositions (4.1) and (4.2) it is sufficient to have 

l a u ( A : ) l < l , l a 2 2 ( £ ) l < l (6.5) 

l«„ (k)aa (k) I < exp( -H„ (X2 (k)) (6.6) 

l«2i ik)a22 (k) I < exp(-Ha (X, (*)) (6.7) 

for every k > 0. Conditions (6.6) and (6.7) are themselves 
satisfied provided that 

Ifln <*)fli2 (*) I < exp(- i f a (Jf2(0» (6.8) 

l«2i ( * ) O H (*) I < exp(-JJ a (*,«))) (6.9) 

so that conditions (6.5, 8, 9) are sufficient conditions for the 
stability of the system. 

Indeed, if condition (6.8) holds, then one has 

therefore 

exp( - HQ (Xl (0))) < exp( - Ha (Xl (1))) 

so that (6.6) is satisfied for every k > 0. Likewise (6.9) for 
(6.7). 

Comparison With Other Results. For fixing the thought, 
and to facilitate the calculation, assume that 

an = a22=h,0<h<l. 

This being so, as varfA', (0)) and var(.y2 (0)) increase, their 
a-entropies also increase, so that the admissible ranges for 
I a121 and I a2X I decrease, reducing to zero in the limiting case. 
In the opposite case, when these variances are zero, the a-
entropies are - oo, and a12 together with a2l may take on any 
finite values. In such a case the eigenvalues of the system are 
the solutions of the equation 

X2-2AX-l-(/i2-a12tf21) = 0 

therefore 

X 1 ,X 2 =/i±(t f 1 2 « 2 1 ) ' / 2 

It is clear that one of the X, 's or both can be larger than unity, 
in other words, the system can be unstable in Lyapunov 
deterministic sense. 

This somewhat surprising result can be explained as 
follows. For the one-dimensional system 

x=ax+bw, 

A.I. is equivalent to L.S. only when w - 0. For w ^ 0, A.I. 
should then be compared with input-output stability [8]. And 
it is exactly what happens in the above decomposition. For 
instance, in equation (6.3), xx (k) is the state of subsystem S, 
while x2 (k) is considered as an input. 

Another apparent discrepancy is the following. The A.I. 
conditions above, say equations (6.5, 8, 9) does not yield 
necessarily Idet A I < 1 as mentioned in proposition 4.1. 
Again this is due to the fact that the A.I. considered in Section 
5.1 is an A.I. conditional to the value of the disturbance on 
the initial state, while the A.I. in proposition 4.1 is absolute 
and independent of this disturbance. In this way, the 
requirement for the latter are obviously stronger than for the 
former. 

6.2 Stochastic Stability. According to the above analysis, 
we shall introduce the following definition. 

Definition 6.1. The discrete system 

x(k+l)=A(k)x(k) (6.10) 

has the property of stochastic conditional asymptotic stability 
at zero, given random initial perturbations, whenever each 
one of its components is A.I. 

We have the following result. 

Proposition 6.1. The system (6.10) has the property of 
conditional asymptotic stochastic stabilty at zero provided 
that the following conditions are satisfied: 

\an(k)\<l,Vi,Vk>:0 (6.11) 

\a„ (k) I \ay (k) I < exp ( - J > „ (Xj (0)) W > 0 . (6.12) 
Mi ^ ,v/ ' 

Proof. The proof is a direct application of equation (4.17) 
by considering every subsystem S, whose state is xt(k) and 
inputs are Xj (k),j ^ i. 

Particular Case of Special Importance. Assume that the 
disturbances occur on some components of X(0) only, say two 
components, for fixing the thought. Then we can partition x 
into two components lx and 2x and the corresponding 
equation is (5.1). Then a condition for stochastic stability is 

Idety4, 7(*) l<l , /=1,2 

\detAu (k)An (k) I < exp(-Ha (X2(0))) 

\detA2l (k)A22 (k) I < exp ( - / / „ (*,(<)))). 
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In Section 3, we have shown that in such a case, X(k) 
converges to the state 0. 

The generalization of this model to a larger number of 
disturbed components is direct. 

7 Structural Perturbations 

This section is devoted to analyzing the effects of disturb­
ances which affect the structural matrices A (k) and B(k). 

7.1 Disturbances on the Matrix A(k). 

Problem 7.1. Again we assume that the system (4.1) is 
designed to run on a trajectory x* (k) corresponding to the 
matrices A* (k) and B*(k). We assume that at the given 
instant p, the system is subject to a random disturbance which 
affects the matrix A (k) in such a way that it becomes 

A(p):=A*(p)+SA(p) (7.1) 

with the coefficients 

diJ(p):=a*u(p)+5dij(p); (7.2) 

and we further assume that this disturbance applies at the 
instant p only. How do we define the effects of this per­
turbation? 

We have the following result. 

Proposition 7.1. Assume that the disturbance applies in 
such a way that the random coefficients a,) (p) of the matrix 
A(p) are mutually independent. Then the system (4.1) is 
asymptotically insensitive in (R" w.r.t. the nominal trajectory 
x* (k) corresponding to A* (k) and the disturbance, provided 
that the following conditions are satisfied. 

E[A(p)}=A*(p) (7.3) 

\x*l{p)x*2(p). . .x*n(p)detA*(p)\<exp(-'EHa(aij{p))) 

° (7.4) 

\detA(p+j)\<lj=l,2 (7.5) 

Proof, (i) Condition (7.3) is the usual requirement on the 
mathematical expectation to yield E{X(p)} = x*(p). 

(ii) At the instant (p + 1) one has 

X(p + 1) =A * (p) x* (p) + bA (p)x* (p) + B* (p) u* (p) 

where x*(p) is deterministic. The term 5A(p)x*(p) so 
appears as a disturbance on the control, and according to 
proposition 4.2, the system is stable provided that 

Idet^l ' (p) I < exp(-Ha(5A(p)x*(p)) (7.6) 

and there now remains to determine a lower bound for the 
right-hand side term of equation (7.6). 

(iii) First, with our assumption about the mutual in­
dependence of the coefficients, we have 

Ha(5A(p)x*(p)) 

= Ha( £ 65u(p)•*;(/>) £ &anj/(p)'xj(p)) 
j j 

= tHAt^u(P)xJ(P)). 

Next, by using (2.10), one has 

Ha(t fy(P)•*/(/») * t H« («*</W-Xj(P)) 
\ = i ' ;= i ' 

and by using (2.13), 

Ha (ddij (p) -xj(p)) =Ha (bau (p)) + ln l* ; (p) I 

or else, by virtue of (2.12) applied to (7.2), 

Ha (bdij(p) >xj(p)) = / /„(«„ (p) ) +\n\xj(p) I. 

After substitution, we finally get, 

n 

Ha(bA(p)x*(p))< £ (#„(«<,(/>))+lnlx/0>) I) 
w=i 

and using this upper bound in (7.6) yields condition (7.4). 
(iv) Now, at the instant (p + j + l ) , j > 1, we have 

X(p+j+l)=A*{p+j)X(p+j)+B(p+j)u*(p) 

and we are exactly in the framework of proposition 4.1 

7.2 Disturbances on the Matrix B(k). 

Problem 7.2. We now assume that it is the matrix B* (p) 
which, at the instant p, is subject to a random disturbance, in 
such a way that it becomes 

B(p):=B*(p)+8B(p) 

with the coefficients 

Bu(p): = btj(p)+Sbu(p) 
and we analyze the A.I. of the system subject to such a 
disturbance. 

We have the following result. 

Proposition 7.2. Assume that the disturbance applies in 
such a way that the random coefficients by (p) of the matrix 
B(p) are mutually independent. Then the system (4.1) is 
asymptotically insensitive in R" w.r.t. the nominal trajectory 
x* (k) corresponding to B*(k), and the disturbance, provided 
that the following conditions are satisfied: 

E{B(p))=B*(p) 

\ut(p)u*2(p). . .K*(p )de t / J* (p ) l<exp( - J Ha(Bu)) 

u 

\detA(p+j)\<lj=l,2, . . . 

Proof. The proof is similar to the proof of proposition 7.1. 

8 Analysis of Linear Continuous Systems 

We are now interested in the asymptotic insensitiveness of 
linear continuous systems, since the related results may be of 
use in the analysis of sampled-data systems between the 
sampling instants. 

8.1 Definition of the System. We now consider the con­
tinuous model associated with the discrete system above, 
which is 

x(t)=A(t)x(t)+B(t)u(t) (8.1) 

x(Q)=x0 

where x(t) holds for the derivative with respect to time, and 
where the definitions of the different variables are exactly like 
in (4.1) except they are continuous in time. We assume that 
the continuity and differentiability assumptions are satisfied 
for (8.1) to have a solution. We assume further that A (t) and 
Jo A (r) dr commute for all /. 

Definition 8.1. Assume that the random vector X, is the 
result of a random disturbance R, which acts against x( t). We 
shall say that X, has the property of A.I. w.r.t. the nominal 
deterministic value x(t) and the disturbance Rt provided that 
the following conditions are satisfied: 

E[X,)=x(t),t*Q; (8.2) 

dHa{X,)/dt<0, for rlargeenough (8.3) 

8.2 Sensitivity w.r.t. Disturbances on the Initial State. 
Problem 8.1. The system is designed to follow an optimal 

trajectory x* (t) defined by a given initial state x0 = x* (0). 
We now assume that x0 is subject to a random disturbance in 
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such a way it becomes a random variable X0, and the state X, 
is random and defined by the equation 

Xt=A(t)X,+B(t)u(t), (8.4) 
Pr{x0<X0<x0+dx0}=p(xQ). (8.5) 

Under which condition is X, A.I.? 
Proposition 8.1. Assume that the system (8.1) is subject to a 

random disturbance on the initial state x(0). Then the a-
entropy Ha (X,) of the future random state X, is given by the 
equation 

Ha (X(t)) =Ha (X0)+ JQ' trA(T)dr (8.6) 

and the system is asymptotically insensitive in (R", w.r.t. the 
nominal trajectory x*(t) and the random disturbance, 
provided that the following conditions are satisfied for t > 0. 

E{X0 j =x0 (8.7) 

trA(t)<0, (8.8) 

where trA(t) denotes the trace of the matrix A(t). 

Proof, (i) Only X0 is random, and for a given value to it, 
standard result yields 

X(t)=(exp[ A(T)dr)X0+ [ ^(t,T)B(T)u(T)dT (8.9) 
Jo Jo 

with 

$(/ , r ) : = exp j>(9) de (8.10) 

(ii) This being so, by virtue of condition (8.7), one has 

E[X,]=x*(t). 

(iii) Next, the Jacobian of the transformation X0 — X, is 
exp |o A (r)dr, and we repeat the calculation in the proof of 
proposition 4.1 to get 

/ / a ( .V , )= In I det exp f A(r)dr\ +Ha(X0). 

This being so, a standard result in matrix calculus provides 

detexp A(T)dT = <sxp\ trA(T)dr (8.11) 
Jo Jo 

therefore 

HAX,) = \\rA(r)dT+Ha(Xo), (8.12) 

and the proof is completed. 

8.3 Sensitivity w.r.t. Disturbances on the Control 

Problem 8.2. The counterpart of problem 4.2, is the model 

Xt=A(t)X,+B(t)u(t)+C(t)W, (8.13) 

in which W, e (R" denotes a random noise, and C(t) is an («, 
n)-matrix. We look for the A.I. of X, w.r.t. to the nominal 
reference trajectory x*(t) in the absence of the noise W,. 

Let Ha ( W,) denote the a-entropy of W,; we state 

Proposition 8.2. The system (8.13) is asymptotically in­
sensitive w.r.t. the nominal trajectory x* (t) and the random 
noise C(t)W, provided that the following conditions are 
satisfied. 

£ • [ ^ 1 = 0 (8.14) 

\n)detC(t)\+tTrA(t)+Ha(W,)<0 (8.15) 

for every / > 0. 

Proof, (i) Condition (8.14) applied to equation (8.13) yields 
E[X,} =x*(t). 

(ii) The solution for equation (8.13) is (in the engineering 
framework) 

X, = (exp[ A(r)dT)X0 + [ $(t,T)B(T)ii(T)dT + 
Jo Jo 

+ ( $(t,T)C(T)WTdr, (8.16) 

and equation (2.12) yields 

Ha(X,)=Ha(j'o<l>(t,T)C{T)WTdT) (8.17) 

and by using the property (2.11) for the a-entropy, we get 

Ha(X,) <\'oHa{$U,T)C(T)WT)dT. (8.18) 

(iii) Next, like in the step (iii) in the proof of proposition 
4.1, we have 

Ha($(t,T)C(T)Wr) = \n\det$(t,T)C(T)\+Ha(WT) 

and by virtue of the definition (8.10) for $(?, T) together with 
the property (8.11) for matrix functions 

Ha(^U,T)C(T)WT) 

= \ ^ ^ ( e ) r f e + l n l d e t C ( r ) l + / / a ( W T ) (8.19) 

Now substituting into equation (8.18), we get 

/ / a ( X , ) < j o (Y( ? r . 4 (e )c?e )+ ln lde tC( r ) l 

+ Ha(WT))dT (8.20) 

When the right-hand side term is decreasing as t increases, it is 
so for the left-hand side one. It is then sufficient to write that 
the derivative of the right-hand side term is negative to get the 
result. 

In this framework, the problem of analyzing the asymptotic 
insensitiveness and the stochastic stability of continuous 
systems can be conducted like for sampled data systems. 

8.4 Possible Extensions of the Results. The above results 
are stated under the condition that the matrices A(t) and j 0 

A ( T) dr commute, which is the case for instance when A (t) is 
constant. This assumption is required because the exponential 
matrix exp (E(t)) involves the powers Ek (t), k = 0, 1, . . . 
and the derivative of Ek(t) equates kEEk~l only when E 
commutes with E. 

Of course, this assumption is rather restrictive. Never­
theless one can expect an extension of the result by using the 
technique of dominant systems as follows. 

Consider the vector system 

x=A(x,t)x,xe(R" (8.21) 

Let Eu E2, Ek denote a partition of R", and define xt 

as the projection of x in Eh Let i/<, denote a scalar norm 
defined on £,; then it infers a ^-dimensional vector norm v (x) 
to x such that 

M * ) = l M * / ) (8-22) 

Assume now that we can define a matrix M(A (x, t)) such 
that v (x) satisfies the variational inequality 

v(x) <M(A (x,t) .v(x) (8.23) 

If further M(A(.)) is constant, say M, then one can analyze 
the dynamical system 

y=M.y 

to get results on the stability of the original system (8.21). 

9 Nonlinear Discrete Systems 

9.1 Main Results. The system we now consider is defined by 
the equation 

x(k+ l)=f(x(k)) +B(k)u(k) (9.1) 
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where x, B and u are those of equation (4.1) and w h e r e / : = 
(/i. f2, • • • Jn)T is a continuous nonlinear (R" — (R" 
mapping. 

We have the following result. 

Proposition 9.1. Assume that the system (9.1) is subject to a 
random disturbance on the state x(p) at the instant p . Then it 
is asymptotically insensitive in (R" w.r.t. the nominal 
trajectory x* (k) and the random disturbance, provided that 
the following conditions are satisfied for every m > 0 

E{RX(p))} =f(x(p)) (9.2) 

\D<J)/D(x)\p+m<M<\ (9.3) 

Proof. Condition (9.2) is the usual condition for the 
statistical average. This being so, after the disturbance occurs, 
the equation is 

X(p + m + l)=f(X(p + m)) +B(p + m)u(p + m) 

therefore 

Ha (X(p + m + l)) = Ha (J(X{p + m))). 

By using equation (2.13), we then have 

Ha{X(p + m+l)) 

1 

1 - a " I qa(x(jp + m)) 
D(f) 

p + m 
dx(p + m). (9.4) 

D(x) 

Next assume that equation (9.3) is satisfied; then (9.4) 
provides 

Ha(X(p + m+l)) = Ha{X{p+))+laM 

and 

Ha(X(p + m+l))-Ha(X(p + m))<0 

therefore the result. 

9.2 Practical Consequence. The practical consequence of 
this result is that we can consider the linearized system 
associated with (9.1) and apply the preceding result. Indeed, if 
we defineX(p + m) as 

X(p + m):=x*(p + m)+£(p + m) (9.5) 

then the equation of the linearized system is 

l{p + m + \)=(D(f)/D(x))p+m.li(p + m) (9.6) 

and condition (9.3) is exactly a condition for its asymptotic 
insensitiveness. 

An Illustrative Example. Consider the second-order system 

Sl:xi(n+\) = x2{n) (9.7) 

S2:x2 (n + 1 )=/ ! (x(n) )*, («) +f2 (x(n) )x2 (n) (9.8) 

with 

/ i (0)=/ 2 (0) = 0 

and examine the asymptotic stability at zero with regard to 
perturbations at the instant zero. According to the criteria 
above, the subsystem S{ is stable, as one has 

0<exP(-Ha(X2(0))), 

and the substem S2 is stable provided that 

\Df2(x)ID(X)\n<\ 

and 

I Dfi (*) I I Df2 (x) 
I D(x) I n I D(x) 

for n > 0. 

<exp(-Ha(XdO))) 

10 Conclusions 

In the present paper, we have proposed to utilize in­
formation theory, and more explicitly the so-called entropy of 
a random variable to analyze the sensitivity and the stability 
of multivariable discrete systems in a stochastic framework. 
The main result we so derived can be summarized as follows. 
We obtained the concept of asymptotic stability with respect 
to random disturbances on the ready state, and the concept of 
conditional asymptotic stability with respect to external 
disturbances in the form of additional random inputs, and 
general criteria for this kind of stability are stated. As a result, 
a multivariable system can be viewed as a set of in­
terconnected subsystems, each one subject to external inputs 
which are the states of the other systems, and the stability 
criteria above directly apply. Broadly speaking it looks like if 
we had identified a somewhat relation or connection between 
stability in Lyapunov sense and input-output stability, but it is 
important to understand that, in the stochastic framework, 
this identification has been possible only because we used the 
entropy. This approach seems to be of interesting prospects in 
the study of large-scale systems. 

The comments above illustrate by themselves the dif­
ferences between the results by Siljak (reference [1]) and the 
present results. The former basically utilizes the technique of 
Lyapunov functions to analyze global asymptotic stability in 
the mean, while the latter deals with a somewhat conditional 
asymptotic stability which is exactly defined by means of the 
entropy. In this way, the latter is more direct than the former 
in the applications, and both ones can be thought of as being 
complementary. 

Another interesting problem would be to introduce the 
effect of quantization in this information theoretic approach. 
In such a case, the entropy is in the form of a finite sum­
mation, it tends to zero with the variance, and the results 
should be slightly different. We intend to work this question. 
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