Computers and Mathematics with Applications 61 (2011) 2186-2190

Contents lists available at ScienceDirect

Computers and Mathematics with Applications Z

journal homepage: www.elsevier.com/locate/camwa

A fractional variational iteration method for solving fractional nonlinear
differential equations

Guo-cheng Wu

Modern Textile Institute, Donghua University, 1882 Yan-an Xilu Road, Shanghai 200051, PR China

ARTICLE INFO ABSTRACT

Keywords: - o o Recently, fractional differential equations have been investigated by employing the famous
Modified Riemann-Liouville derivative variational iteration method. However, all the previous works avoid the fractional order
Fractional corrected functional . R . . L. B .
. o . ; term and only handle it as a restricted variation. A fractional variational iteration method
Fractional variational iteration method . . . . .
was first proposed in [G.C. Wu, EW.M. Lee, Fractional variational iteration method and
its application, Phys. Lett. A 374 (2010) 2506-2509] and gave a generalized Lagrange
multiplier. In this paper, two fractional differential equations are approximately solved
with the fractional variational iteration method.
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1. Introduction

Recently the variational iteration method [1] has been widely applied to analytically solve fractional differential
equations [2-6], where the term with the fractional derivative was considered as a restricted variation, making the
identification of the Lagrange multiplier very inaccurate. To overcome this problem, we investigate the local behavior of
fractional differential equations and determine the Lagrange multiplier in a more accurate way with the fractional variation
iteration method (FVIM) [7].

2. Properties of local fractional calculus

On the basis of Cantor-like sets, Kolwankar and Gangal [8,9] proposed a concept of a local fractional derivative:

D* f(x lim ——— —&)n — f(x0))d 1
W00 = lim )dx,,/< £ (&) — f (x))dé, (1
where the derivative on the right-hand side is the Riemann-Liouville fractional derivative.

Chen et al. [10] presented the necessary conditions for

I —fx
D f() = lim LA EOTD =) )
y—x y—x)“

We now can derive the following useful properties of the Kolwankar-Gangal derivative.

(a) Integration with respect to (dx)“*:

In the derivation of Eq. (2), for any ¢, there exists a d, where |x; ;1 — x;| < d, such that

(Xip1 — x)*
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Since f (x) is continuous in the closed interval [a, b], if we consider a finite partition, [xo, X1], . . ., [Xi, Xix1], - - - » [Xn—1, Xn]
where Xy = a, x, = b, and note that

n—1
Fby = f(a) =) (F(xigr) — F(x)),

i=0
we can choose the maximal § such that
(Xip1 — x)*

n—1
f(b)—f(a)—;Di‘,.f(xi) FiTa)

As a result, we develop a definition of fractional integration.
If g(x) is continuous in the interval [a, b] and the limit of Z?;Ol g(x;) (X’;(l]:;;
that the function g(x) is a-order integrable in the interval [a, b] denoted by

exists when n tends to infinity, then we say

few =~ /b (0(do* = li f: (p S =17 (3)
A j g (d)” = lim izog e

(b) The fractional Leibniz product law:
If u and v are a-order differentiable functions, we have the generalized Leibniz product law from Eq. (2)

D (uv) = u®v + uv®. (4)
(c) The fractional Leibniz formulation:
oy Dy f(x) =f(x) —f(0), 0<a =<1 (5)
Therefore, integration by parts can be used in the fractional calculus:

Adfu®v = (uv) 2 — Fuv®. (6)

3. The fractional variational iteration method
In this section, two examples are given to illustrate the effect of the proposed method.

Example 1. As the first example, we consider a time-fractional diffusion equation:

o*u(x, t) _ Cazu(x, t) _ I(F(X)u(x, t))

0O<a<1, 7
e X2 ox o= )

where a% is the Caputo derivative, with initial condition u(x, 0) = f(x).

We replace the fractional Caputo derivative with the local fractional derivative in Eq. (7), and assume ¢ = 1, F(x) = —x
which leads to
%u(x, t)  %u(x, t) N A(xu(x, t))
e X ax
with the initial condition u(x, 0) = x2.
A correction functional for Eq. (8) can be constructed as follows [1,5]:

O<a <1, (8)

1 t %u,(x, 7y %hUn(x,T)  A(xin(x, T))
Upp1(x, ) = up(x, t) + — At — — dr)* 9
nt1(X, t) n( )+F(1+a)/0 ( T){ Py o2 % (d7) 9)
with the property, from Egs. (4)—(6), that A(t, t) must satisfy
9% (t,
3(71) —0, and 14 A(t, T)|sr = O. (10)
-L-C(

Therefore, A(t, T) can be identified as A(t, 7) = —1.
With the fractional Taylor series [11], we can determine the trial function or the initial value ug(x,t) = up(x,0) =
f(x) = x? in the iteration formulation as follows:

1 Elo%,(x, T)  %up(x,t)  d(xun(x, t))
i) = e 0) = o [T T S

} (dr)”.
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We can derive

D) = 2 — 1 /t Fu(x, 1) 3%ug(x, 7) _ dxup(x, 7)) (do)®
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As a result, the exact solution can be given in a compact form:
itiot

u(x, £) = lim uy(x,£) = 'L“So;) Fasia E, (kt®), (11)

where k' = x*> + (1 4+ x%)(3' — 1) and E, (kt%) is the Mittag-Leffler function. We note that Eq. (12) is also the exact solution

of the fractional diffusion equation [5] if we take & = %

Example 2. In order to illustrate the FVIM for higher fractional order equations, we only consider an initial value problem
given in [12]:
Qa) _ 2
ye =y* 41, 0<a<1,0<x<1, (12)
with y(0) = 0 and y“(0) = 1, where y?® = D*D%y.

Construct the following functional:
1 * (20) 2
X, t) = yo(x, t _— My —y — 1}(d§&)“.
Vi1 (6 £) = )+r(1+a>/o 02— 72(6) — 1)(dé)
We have
8Yns1 = 8y, +¥5/XWZ“> — ya(§) — (&))"
" "Tr4a) Jo " "
o o ] * o o
= 8Yn + MY @ gy — A¢ ><r)ayn(r>|g:x+m /0 A8y, (d&)”.

Similarly, we can set the coefficients of §u, () and Sy,(f‘) to zero:
1-29 =0, A%* =0 and Alz—y =0.
As a result, the Lagrange multiplier can be identified as

0"

= . (13)
r'l+a)
By a similar manipulation, we can derive a more generalized Lagrange multiplier:

O
for higher fractional nonlinear ordinary differential equations:
Y™ =N@y), 0<a<l.
For Eq. (13), we can check when @ = 1and A = & — x is the multiplier for the differential equation of integer order
YO =y 41, (14)

The iteration formulation for Eq. (12) can be rewritten as

_ 1 FE=" 0w 2 «
yn+1(X)—}’n(x)+1_,(]+a) ; F(l—l—a){y" ¥, — 1}(d§)*.
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Fig. 1. The second-order approximate solution vs. the exact solution when o = 1. The discontinuous line (- -) is the approximate solution when « = 0.9
and the dotted line (...) is that when « = 0.99. The continuous line is the exact solution when @ = 1. However, the figure only shows the trend of the
approximate solutions on a large scale, which cannot illustrate the local behavior of fractional differential equations.

Taking the initial value

Y@ (0)x* _ X
rl+a) T(+a)

Yo =y(0) +

we can obtain
FE=XY on
ri+aw) o T04+a)"°

Y1) = yo(x) + Vo — 1}(d€)”
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If the second-order approximation, y, (x), is sufficient, we can compare the solution with the exact solutions for the case
o = lasinFig. 1.

4. Conclusions

In this paper, a fractional variational iteration method is proposed, and proved to be an efficient tool for solving
fractional differential equations because the Lagrange multiplier can be identified in a more accurate way using the fractional
variational theory. Some other recent work in calculation of variation can be found in Refs. [13-15].
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