A fractional variational iteration method for solving fractional nonlinear differential equations

Guo-cheng Wu

Modern Textile Institute, Donghua University, 1882 Yan-an Xilu Road, Shanghai 200051, PR China

A R T I CLE INFO

Keywords:

Modified Riemann-Liouville derivative Fractional corrected functional Fractional variational iteration method

Abstract

Recently, fractional differential equations have been investigated by employing the famous variational iteration method. However, all the previous works avoid the fractional order term and only handle it as a restricted variation. A fractional variational iteration method was first proposed in [G.C. Wu, E.W.M. Lee, Fractional variational iteration method and its application, Phys. Lett. A 374 (2010) 2506-2509] and gave a generalized Lagrange multiplier. In this paper, two fractional differential equations are approximately solved with the fractional variational iteration method.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recently the variational iteration method [1] has been widely applied to analytically solve fractional differential equations [2-6], where the term with the fractional derivative was considered as a restricted variation, making the identification of the Lagrange multiplier very inaccurate. To overcome this problem, we investigate the local behavior of fractional differential equations and determine the Lagrange multiplier in a more accurate way with the fractional variation iteration method (FVIM) [7].

2. Properties of local fractional calculus

On the basis of Cantor-like sets, Kolwankar and Gangal [8,9] proposed a concept of a local fractional derivative:

$$
\begin{equation*}
D_{x_{0}}^{\alpha} f(x)=\lim _{x \rightarrow x_{0}} \frac{1}{\Gamma(n-\alpha)} \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} \int_{x_{0}}^{x}(x-\xi)^{n-\alpha}\left(f(\xi)-f\left(x_{0}\right)\right) \mathrm{d} \xi \tag{1}
\end{equation*}
$$

where the derivative on the right-hand side is the Riemann-Liouville fractional derivative.
Chen et al. [10] presented the necessary conditions for

$$
\begin{equation*}
D_{x}^{\alpha} f(x)=\lim _{y \rightarrow x} \frac{\Gamma(1+\alpha)(f(y)-f(x))}{(y-x)^{\alpha}}, \quad 0<\alpha \leq 1 \tag{2}
\end{equation*}
$$

We now can derive the following useful properties of the Kolwankar-Gangal derivative.
(a) Integration with respect to $(\mathrm{d} x)^{\alpha}$:

In the derivation of Eq. (2), for any ϵ, there exists a d, where $\left|x_{i+1}-x_{i}\right|<d$, such that

$$
\left|f\left(x_{i+1}\right)-f\left(x_{i}\right)-D_{x_{i}}^{\alpha} f\left(x_{i}\right) \frac{\left(x_{i+1}-x_{i}\right)^{\alpha}}{\Gamma(1+\alpha)}\right|<\epsilon
$$

[^0]Since $f(x)$ is continuous in the closed interval $[a, b]$, if we consider a finite partition, $\left[x_{0}, x_{1}\right], \ldots,\left[x_{i}, x_{i+1}\right], \ldots,\left[x_{n-1}, x_{n}\right]$ where $x_{0}=a, x_{n}=b$, and note that

$$
f(b)-f(a)=\sum_{i=0}^{n-1}\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right),
$$

we can choose the maximal δ such that

$$
\left|f(b)-f(a)-\sum_{i=0}^{n-1} D_{x_{i}}^{\alpha} f\left(x_{i}\right) \frac{\left(x_{i+1}-x_{i}\right)^{\alpha}}{\Gamma(1+\alpha)}\right|<\epsilon .
$$

As a result, we develop a definition of fractional integration.
If $g(x)$ is continuous in the interval $[a, b]$ and the limit of $\sum_{i=0}^{n-1} g\left(x_{i}\right) \frac{\left(x_{i+1}-x_{i}\right)^{\alpha}}{\Gamma(1+\alpha)}$ exists when n tends to infinity, then we say that the function $g(x)$ is α-order integrable in the interval $[a, b]$ denoted by

$$
\begin{equation*}
{ }_{a} I_{b}^{\alpha} g(x)=\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} g(x)(\mathrm{d} x)^{\alpha}=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} g\left(x_{i}\right) \frac{\left(x_{i+1}-x_{i}\right)^{\alpha}}{\Gamma(1+\alpha)} . \tag{3}
\end{equation*}
$$

(b) The fractional Leibniz product law:

If u and v are α-order differentiable functions, we have the generalized Leibniz product law from Eq. (2)

$$
\begin{equation*}
D_{x}^{(\alpha)}(u v)=u^{(\alpha)} v+u v^{(\alpha)} \tag{4}
\end{equation*}
$$

(c) The fractional Leibniz formulation:

$$
\begin{equation*}
{ }_{o} I_{x}^{\alpha} D_{x}^{\alpha} f(x)=f(x)-f(0), \quad 0<\alpha \leq 1 \tag{5}
\end{equation*}
$$

Therefore, integration by parts can be used in the fractional calculus:

$$
\begin{equation*}
{ }_{a} I_{b}^{\alpha} u^{(\alpha)} v=\left.(u v)\right|_{a} ^{b}-{ }_{a} I_{b}^{\alpha} u v^{(\alpha)} . \tag{6}
\end{equation*}
$$

3. The fractional variational iteration method

In this section, two examples are given to illustrate the effect of the proposed method.
Example 1. As the first example, we consider a time-fractional diffusion equation:

$$
\begin{equation*}
\frac{\partial^{\alpha} u(x, t)}{\partial t^{\alpha}}=c \frac{\partial^{2} u(x, t)}{\partial x^{2}}-\frac{\partial(F(x) u(x, t))}{\partial x}, \quad 0<\alpha \leq 1, \tag{7}
\end{equation*}
$$

where $\frac{\partial^{\alpha}}{\partial t^{\alpha}}$ is the Caputo derivative, with initial condition $u(x, 0)=f(x)$.
We replace the fractional Caputo derivative with the local fractional derivative in Eq. (7), and assume $c=1, F(x)=-x$ which leads to

$$
\begin{equation*}
\frac{\partial^{\alpha} u(x, t)}{\partial t^{\alpha}}=\frac{\partial^{2} u(x, t)}{\partial x^{2}}+\frac{\partial(x u(x, t))}{\partial x}, \quad 0<\alpha \leq 1, \tag{8}
\end{equation*}
$$

with the initial condition $u(x, 0)=x^{2}$.
A correction functional for Eq. (8) can be constructed as follows [1,5]:

$$
\begin{equation*}
u_{n+1}(x, t)=u_{n}(x, t)+\frac{1}{\Gamma(1+\alpha)} \int_{0}^{t} \lambda(t, \tau)\left\{\frac{\partial^{\alpha} u_{n}(x, \tau)}{\partial \tau^{\alpha}}-\frac{\partial^{2} \tilde{u}_{n}(x, \tau)}{\partial x^{2}}-\frac{\partial\left(x \tilde{u}_{n}(x, \tau)\right)}{\partial x}\right\}(\mathrm{d} \tau)^{\alpha} \tag{9}
\end{equation*}
$$

with the property, from Eqs. (4)-(6), that $\lambda(t, \tau)$ must satisfy

$$
\begin{equation*}
\frac{\partial^{\alpha} \lambda(t, \tau)}{\partial \tau^{\alpha}}=0, \quad \text { and } \quad 1+\left.\lambda(t, \tau)\right|_{\tau=t}=0 . \tag{10}
\end{equation*}
$$

Therefore, $\lambda(t, \tau)$ can be identified as $\lambda(t, \tau)=-1$.
With the fractional Taylor series [11], we can determine the trial function or the initial value $u_{0}(x, t)=u_{0}(x, 0)=$ $f(x)=x^{2}$ in the iteration formulation as follows:

$$
u_{n+1}(x, t)=u_{n}(x, t)-\frac{1}{\Gamma(1+\alpha)} \int_{0}^{t}\left\{\frac{\partial^{\alpha} u_{n}(x, \tau)}{\partial \tau^{\alpha}}-\frac{\partial^{2} u_{n}(x, t)}{\partial x^{2}}-\frac{\partial\left(x u_{n}(x, t)\right)}{\partial x}\right\}(\mathrm{d} \tau)^{\alpha} .
$$

We can derive

$$
\begin{aligned}
u_{1}(x, t) & =x^{2}-\frac{1}{\Gamma(1+\alpha)} \int_{0}^{t}\left\{\frac{\partial^{\alpha} u_{0}(x, \tau)}{\partial \tau^{\alpha}}-\frac{\partial^{2} u_{0}(x, \tau)}{\partial x^{2}}-\frac{\partial\left(x u_{0}(x, \tau)\right)}{\partial x}\right\}(\mathrm{d} \tau)^{\alpha} \\
& =x^{2}+\frac{\left(2+3 x^{2}\right) t^{\alpha}}{\Gamma(1+\alpha)} \\
u_{2}(x, t) & =x^{2}+\frac{\left(2+3 x^{2}\right) t^{\alpha}}{\Gamma(1+\alpha)}+\frac{\left(8+9 x^{2}\right) t^{2 \alpha}}{\Gamma(1+2 \alpha)} \\
u_{3}(x, t) & =x^{2}+\frac{\left(2+3 x^{2}\right) t^{\alpha}}{\Gamma(1+\alpha)}+\frac{\left(8+9 x^{2}\right) t^{2 \alpha}}{\Gamma(1+2 \alpha)}+\frac{\left(26+27 x^{2}\right) t^{3 \alpha}}{\Gamma(1+3 \alpha)} .
\end{aligned}
$$

As a result, the exact solution can be given in a compact form:

$$
\begin{equation*}
u(x, t)=\lim _{n \rightarrow \infty} u_{n}(x, t)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \frac{k^{i} t^{i \alpha}}{\Gamma(1+i \alpha)}=E_{\alpha}\left(k t^{\alpha}\right) \tag{11}
\end{equation*}
$$

where $k^{i}=x^{2}+\left(1+x^{2}\right)\left(3^{i}-1\right)$ and $E_{\alpha}\left(k t^{\alpha}\right)$ is the Mittag-Leffler function. We note that Eq. (12) is also the exact solution of the fractional diffusion equation [5] if we take $\alpha=\frac{1}{2}$.

Example 2. In order to illustrate the FVIM for higher fractional order equations, we only consider an initial value problem given in [12]:

$$
\begin{equation*}
y^{(2 \alpha)}=y^{2}+1, \quad 0<\alpha \leq 1,0 \leq x \leq 1 \tag{12}
\end{equation*}
$$

with $y(0)=0$ and $y^{(\alpha)}(0)=1$, where $y^{(2 \alpha)}=D_{x}^{\alpha} D_{x}^{\alpha} y$.
Construct the following functional:

$$
y_{n+1}(x, t)=y_{n}(x, t)+\frac{1}{\Gamma(1+\alpha)} \int_{0}^{x} \lambda\left\{y_{n}^{(2 \alpha)}-\tilde{y}_{n}^{2}(\xi)-1\right\}(\mathrm{d} \xi)^{\alpha}
$$

We have

$$
\begin{aligned}
\delta y_{n+1} & =\delta y_{n}+\frac{1}{\Gamma(1+\alpha)} \delta \int_{0}^{x} \lambda\left(y_{n}^{(2 \alpha)}-y_{n}^{2}(\xi)-1\right)(\mathrm{d} \xi)^{\alpha} \\
& =\delta y_{n}+\left.\lambda \delta y_{n}^{(\alpha)}\right|_{\xi=x}-\left.\lambda^{(\alpha)}(\tau) \delta y_{n}(\tau)\right|_{\xi=x}+\frac{1}{\Gamma(1+\alpha)} \int_{0}^{x} \lambda^{(2 \alpha)} \delta y_{n}(\mathrm{~d} \xi)^{\alpha} .
\end{aligned}
$$

Similarly, we can set the coefficients of $\delta u_{n}(\tau)$ and $\delta y_{n}^{(\alpha)}$ to zero:

$$
1-\left.\lambda^{(\alpha)}\right|_{\xi=x}=0, \quad \lambda^{(2 \alpha)}=0 \quad \text { and }\left.\quad \lambda\right|_{\xi=x}=0
$$

As a result, the Lagrange multiplier can be identified as

$$
\begin{equation*}
\lambda=\frac{(\xi-x)^{\alpha}}{\Gamma(1+\alpha)} \tag{13}
\end{equation*}
$$

By a similar manipulation, we can derive a more generalized Lagrange multiplier:

$$
\lambda=(-1)^{(m)} \frac{(\xi-x)^{(m-1) \alpha}}{\Gamma(1+(m-1) \alpha)}
$$

for higher fractional nonlinear ordinary differential equations:

$$
y^{(m \alpha)}=N(y), \quad 0<\alpha \leq 1
$$

For Eq. (13), we can check when $\alpha=1$ and $\lambda=\xi-x$ is the multiplier for the differential equation of integer order

$$
\begin{equation*}
y^{(\prime \prime)}=y^{2}+1 \tag{14}
\end{equation*}
$$

The iteration formulation for Eq. (12) can be rewritten as

$$
y_{n+1}(x)=y_{n}(x)+\frac{1}{\Gamma(1+\alpha)} \int_{0}^{x} \frac{(\xi-x)^{\alpha}}{\Gamma(1+\alpha)}\left\{y_{n}^{(2 \alpha)}-y_{n}^{2}-1\right\}(\mathrm{d} \xi)^{\alpha}
$$

Fig. 1. The second-order approximate solution vs. the exact solution when $\alpha=1$. The discontinuous line (--) is the approximate solution when $\alpha=0.9$ and the dotted line (...) is that when $\alpha=0.99$. The continuous line is the exact solution when $\alpha=1$. However, the figure only shows the trend of the approximate solutions on a large scale, which cannot illustrate the local behavior of fractional differential equations.

Taking the initial value

$$
y_{0}=y(0)+\frac{y^{(\alpha)}(0) x^{\alpha}}{\Gamma(1+\alpha)}=\frac{x^{\alpha}}{\Gamma(1+\alpha)},
$$

we can obtain

$$
\begin{aligned}
y_{1}(x)= & y_{0}(x)+\frac{1}{\Gamma(1+\alpha)} \int_{0}^{x} \frac{(\xi-x)^{\alpha}}{\Gamma(1+\alpha)}\left\{y_{0}^{(2 \alpha)}-y_{0}^{2}-1\right\}(\mathrm{d} \xi)^{\alpha} \\
= & \frac{x^{\alpha}}{\Gamma(1+\alpha)}+\frac{x^{2 \alpha}}{\Gamma(1+2 \alpha)}+\frac{\Gamma(1+2 \alpha) x^{4 \alpha}}{\Gamma^{2}(1+\alpha) \Gamma(1+4 \alpha)}, \\
y_{2}(x)= & y_{1}(x)+\frac{1}{\Gamma(1+\alpha)} \int_{0}^{x} \frac{(\xi-x)^{\alpha}}{\Gamma(1+\alpha)}\left\{y_{1}^{(2 \alpha)}-y_{1}^{2}-1\right\}(\mathrm{d} \xi)^{\alpha} \\
= & \frac{x^{\alpha}}{\Gamma(1+\alpha)}+\frac{x^{2 \alpha}}{\Gamma(1+2 \alpha)}+\frac{\Gamma(1+2 \alpha) x^{4 \alpha}}{\Gamma^{2}(1+\alpha) \Gamma(1+4 \alpha)}+\frac{2 \Gamma(1+3 \alpha) x^{5 \alpha}}{\Gamma(1+\alpha) \Gamma(1+2 \alpha) \Gamma(1+5 \alpha)} \\
& +\frac{\Gamma(1+4 \alpha) x^{6 \alpha}}{\Gamma^{2}(1+2 \alpha) \Gamma(1+6 \alpha)}+\frac{2 \Gamma(1+5 \alpha) \Gamma(1+2 \alpha) x^{7 \alpha}}{\Gamma^{3}(1+\alpha) \Gamma(1+4 \alpha) \Gamma(1+7 \alpha)}+\frac{2 \Gamma(1+6 \alpha) x^{8 \alpha}}{\Gamma^{2}(1+\alpha) \Gamma(1+4 \alpha) \Gamma(1+8 \alpha)} \\
& +\frac{\Gamma(1+8 \alpha) \Gamma^{2}\left(1+2 \alpha x^{10 \alpha}\right.}{\Gamma^{4}(1+\alpha) \Gamma^{2}(1+4 \alpha) \Gamma(1+10 \alpha)} .
\end{aligned}
$$

If the second-order approximation, $y_{2}(x)$, is sufficient, we can compare the solution with the exact solutions for the case $\alpha=1$ as in Fig. 1.

4. Conclusions

In this paper, a fractional variational iteration method is proposed, and proved to be an efficient tool for solving fractional differential equations because the Lagrange multiplier can be identified in a more accurate way using the fractional variational theory. Some other recent work in calculation of variation can be found in Refs. [13-15].

References

[1] J.H. He, Variational iteration method: a kind of nonlinear analytical technique: some examples, Int. J. Nonlinear Mech. 34 (1999) 699-708.
[2] M. Safari, D.D. Ganji, M. Moslemi, Application of He's variational iteration method and Adomian's decomposition method to the fractional KdV-Burgers-Kuramoto equation, Comput. Math. Appl. 58 (2009) 2091-2097.
[3] Z. Odibat, S. Momani, The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Comput. Math. Appl. 58 (2009) 2199-2208.
[4] J.H. He, G.C. Wu, F. Austin, The variational iteration method which should be followed, Nonlinear Sci. Lett. A 1 (2010) 1-30.
[5] S. Das, Analytical solution of a fractional diffusion equation by variational iteration method, Comput. Math. Appl. 57 (2009) 483-487.
[6] N.A. Khan, A. Ara, S.A. Ali, et al., Analytical study of Navier-Stokes equation with fractional orders using He's homotopy perturbation and variational iteration methods, Int. J. Nonlinear Sci. Numer. 10 (2009) 1127-1134.
[7] G.C. Wu, E.W.M. Lee, Fractional variational iteration method and its application, Phys. Lett. A 374 (2010) 2506-2509.
[8] K.M. Kolwankar, A.D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions, Chaos 6 (1996) $505-513$.
[9] K.M. Kolwankar, A.D. Gangal, Local fractional Fokker-Planck equation, Phys. Rev. Lett. 80 (1998) 214-217.
[10] Y. Chen, Y. Yan, K.W. Zhang, On the local fractional derivative, J. Math. Anal. Appl. 362 (2010) 17-33.
[11] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl. 51 (2006) 1367-1376.
[12] N.T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput. 131 (2002) $517-529$.
[13] R. Almeida, A.B. Malinowska, D.F.M. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys. 51 (2010) 033503.
[14] A.B. Malinowska, M.R.S. Ammi, D.F.M. Torres, Composition functionals in fractional calculus of variations, Commun. Frac. Calc. 1 (2010) $32-40$.
[15] N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete-time fractional variational problems, Signal Process. (2010), in press (doi:10.1016/j.sigpro.2010.05.001).

[^0]: E-mail addresses: wuguocheng2002@yahoo.com.cn, frac.calc@china.com.

