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a b s t r a c t

Recently, fractional differential equations have been investigated by employing the famous
variational iteration method. However, all the previous works avoid the fractional order
term and only handle it as a restricted variation. A fractional variational iteration method
was first proposed in [G.C. Wu, E.W.M. Lee, Fractional variational iteration method and
its application, Phys. Lett. A 374 (2010) 2506–2509] and gave a generalized Lagrange
multiplier. In this paper, two fractional differential equations are approximately solved
with the fractional variational iteration method.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Recently the variational iteration method [1] has been widely applied to analytically solve fractional differential
equations [2–6], where the term with the fractional derivative was considered as a restricted variation, making the
identification of the Lagrange multiplier very inaccurate. To overcome this problem, we investigate the local behavior of
fractional differential equations and determine the Lagrange multiplier in a more accurate way with the fractional variation
iteration method (FVIM) [7].

2. Properties of local fractional calculus

On the basis of Cantor-like sets, Kolwankar and Gangal [8,9] proposed a concept of a local fractional derivative:

Dα
x0 f (x) = lim

x→x0

1
Γ (n − α)

dn

dxn

∫ x

x0
(x − ξ)n−α(f (ξ) − f (x0))dξ, (1)

where the derivative on the right-hand side is the Riemann–Liouville fractional derivative.
Chen et al. [10] presented the necessary conditions for

Dα
x f (x) = lim

y→x

Γ (1 + α)(f (y) − f (x))
(y − x)α

, 0 < α ≤ 1. (2)

We now can derive the following useful properties of the Kolwankar–Gangal derivative.
(a) Integration with respect to (dx)α:
In the derivation of Eq. (2), for any ϵ, there exists a d, where |xi+1 − xi| < d, such thatf (xi+1) − f (xi) − Dα

xi f (xi)
(xi+1 − xi)α

Γ (1 + α)

 < ϵ.
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Since f (x) is continuous in the closed interval [a, b], if we consider a finite partition, [x0, x1], . . . , [xi, xi+1], . . . , [xn−1, xn]
where x0 = a, xn = b, and note that

f (b) − f (a) =

n−1−
i=0

(f (xi+1) − f (xi)),

we can choose the maximal δ such thatf (b) − f (a) −

n−1−
i=0

Dα
xi f (xi)

(xi+1 − xi)α

Γ (1 + α)

 < ϵ.

As a result, we develop a definition of fractional integration.
If g(x) is continuous in the interval [a, b] and the limit of

∑n−1
i=0 g(xi)

(xi+1−xi)α

Γ (1+α)
exists when n tends to infinity, then we say

that the function g(x) is α-order integrable in the interval [a, b] denoted by

aIαb g(x) =
1

Γ (1 + α)

∫ b

a
g(x)(dx)α = lim

n→∞

n−1−
i=0

g(xi)
(xi+1 − xi)α

Γ (1 + α)
. (3)

(b) The fractional Leibniz product law:
If u and v are α-order differentiable functions, we have the generalized Leibniz product law from Eq. (2)

D(α)
x (uv) = u(α)v + uv(α). (4)

(c) The fractional Leibniz formulation:

0Iαx D
α
x f (x) = f (x) − f (0), 0 < α ≤ 1. (5)

Therefore, integration by parts can be used in the fractional calculus:

aIαb u
(α)v = (uv) |

b
a −a Iαb uv

(α). (6)

3. The fractional variational iteration method

In this section, two examples are given to illustrate the effect of the proposed method.

Example 1. As the first example, we consider a time-fractional diffusion equation:

∂αu(x, t)
∂tα

= c
∂2u(x, t)

∂x2
−

∂(F(x)u(x, t))
∂x

, 0 < α ≤ 1, (7)

where ∂α

∂tα is the Caputo derivative, with initial condition u(x, 0) = f (x).
We replace the fractional Caputo derivative with the local fractional derivative in Eq. (7), and assume c = 1, F(x) = −x

which leads to

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2
+

∂(xu(x, t))
∂x

, 0 < α ≤ 1, (8)

with the initial condition u(x, 0) = x2.
A correction functional for Eq. (8) can be constructed as follows [1,5]:

un+1(x, t) = un(x, t) +
1

Γ (1 + α)

∫ t

0
λ(t, τ )


∂αun(x, τ )

∂τ α
−

∂2ũn(x, τ )

∂x2
−

∂(xũn(x, τ ))

∂x


(dτ)α (9)

with the property, from Eqs. (4)–(6), that λ(t, τ ) must satisfy

∂αλ(t, τ )

∂τ α
= 0, and 1 + λ(t, τ )|τ=t = 0. (10)

Therefore, λ(t, τ ) can be identified as λ(t, τ ) = −1.
With the fractional Taylor series [11], we can determine the trial function or the initial value u0(x, t) = u0(x, 0) =

f (x) = x2 in the iteration formulation as follows:

un+1(x, t) = un(x, t) −
1

Γ (1 + α)

∫ t

0


∂αun(x, τ )

∂τ α
−

∂2un(x, t)
∂x2

−
∂(xun(x, t))

∂x


(dτ)α.
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We can derive

u1(x, t) = x2 −
1

Γ (1 + α)

∫ t

0


∂αu0(x, τ )

∂τ α
−

∂2u0(x, τ )

∂x2
−

∂(xu0(x, τ ))

∂x


(dτ)α

= x2 +
(2 + 3x2)tα

Γ (1 + α)
,

u2(x, t) = x2 +
(2 + 3x2)tα

Γ (1 + α)
+

(8 + 9x2)t2α

Γ (1 + 2α)
,

u3(x, t) = x2 +
(2 + 3x2)tα

Γ (1 + α)
+

(8 + 9x2)t2α

Γ (1 + 2α)
+

(26 + 27x2)t3α

Γ (1 + 3α)
.

As a result, the exact solution can be given in a compact form:

u(x, t) = lim
n→∞

un(x, t) = lim
n→∞

n−
i=0

kit iα

Γ (1 + iα)
= Eα(ktα), (11)

where ki = x2 + (1 + x2)(3i
− 1) and Eα(ktα) is the Mittag-Leffler function. We note that Eq. (12) is also the exact solution

of the fractional diffusion equation [5] if we take α =
1
2 .

Example 2. In order to illustrate the FVIM for higher fractional order equations, we only consider an initial value problem
given in [12]:

y(2α)
= y2 + 1, 0 < α ≤ 1, 0 ≤ x ≤ 1, (12)

with y(0) = 0 and y(α)(0) = 1, where y(2α)
= Dα

x D
α
x y.

Construct the following functional:

yn+1(x, t) = yn(x, t) +
1

Γ (1 + α)

∫ x

0
λ{y(2α)

n − ỹ2n(ξ) − 1}(dξ)α.

We have

δyn+1 = δyn +
1

Γ (1 + α)
δ

∫ x

0
λ(y(2α)

n − y2n(ξ) − 1)(dξ)α

= δyn + λδy(α)
n |ξ=x − λ(α)(τ )δyn(τ )|ξ=x +

1
Γ (1 + α)

∫ x

0
λ(2α)δyn(dξ)α.

Similarly, we can set the coefficients of δun(τ ) and δy(α)
n to zero:

1 − λ(α)
|ξ=x = 0, λ(2α)

= 0 and λ|ξ=x = 0.

As a result, the Lagrange multiplier can be identified as

λ =
(ξ − x)α

Γ (1 + α)
. (13)

By a similar manipulation, we can derive a more generalized Lagrange multiplier:

λ = (−1)(m) (ξ − x)(m−1)α

Γ (1 + (m − 1)α)
,

for higher fractional nonlinear ordinary differential equations:

y(mα)
= N(y), 0 < α ≤ 1.

For Eq. (13), we can check when α = 1 and λ = ξ − x is the multiplier for the differential equation of integer order

y(′′)
= y2 + 1. (14)

The iteration formulation for Eq. (12) can be rewritten as

yn+1(x) = yn(x) +
1

Γ (1 + α)

∫ x

0

(ξ − x)α

Γ (1 + α)
{y(2α)

n − y2n − 1}(dξ)α.
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Fig. 1. The second-order approximate solution vs. the exact solution when α = 1. The discontinuous line (- -) is the approximate solution when α = 0.9
and the dotted line (. . . ) is that when α = 0.99. The continuous line is the exact solution when α = 1. However, the figure only shows the trend of the
approximate solutions on a large scale, which cannot illustrate the local behavior of fractional differential equations.

Taking the initial value

y0 = y(0) +
y(α)(0)xα

Γ (1 + α)
=

xα

Γ (1 + α)
,

we can obtain

y1(x) = y0(x) +
1

Γ (1 + α)

∫ x

0

(ξ − x)α

Γ (1 + α)
{y(2α)

0 − y20 − 1}(dξ)α

=
xα

Γ (1 + α)
+

x2α

Γ (1 + 2α)
+

Γ (1 + 2α)x4α

Γ 2(1 + α)Γ (1 + 4α)
,

y2(x) = y1(x) +
1

Γ (1 + α)

∫ x

0

(ξ − x)α

Γ (1 + α)
{y(2α)

1 − y21 − 1}(dξ)α

=
xα

Γ (1 + α)
+

x2α

Γ (1 + 2α)
+

Γ (1 + 2α)x4α

Γ 2(1 + α)Γ (1 + 4α)
+

2Γ (1 + 3α)x5α

Γ (1 + α)Γ (1 + 2α)Γ (1 + 5α)

+
Γ (1 + 4α)x6α

Γ 2(1 + 2α)Γ (1 + 6α)
+

2Γ (1 + 5α)Γ (1 + 2α)x7α

Γ 3(1 + α)Γ (1 + 4α)Γ (1 + 7α)
+

2Γ (1 + 6α)x8α

Γ 2(1 + α)Γ (1 + 4α)Γ (1 + 8α)

+
Γ (1 + 8α)Γ 2(1 + 2α)x10α

Γ 4(1 + α)Γ 2(1 + 4α)Γ (1 + 10α)
.

If the second-order approximation, y2(x), is sufficient, we can compare the solution with the exact solutions for the case
α = 1 as in Fig. 1.

4. Conclusions

In this paper, a fractional variational iteration method is proposed, and proved to be an efficient tool for solving
fractional differential equations because the Lagrangemultiplier can be identified in amore accuratewayusing the fractional
variational theory. Some other recent work in calculation of variation can be found in Refs. [13–15].
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