94 research outputs found

    Comparing methods for modeling longitudinal and survival data, with consideration of mediation analysis

    Full text link
    Joint modeling of longitudinal and survival data has received much attention and is becoming increasingly useful. In clinical studies, longitudinal biomarkers are used to monitor disease progression and to predict survival. These longitudinal measures are often missing at failure times and may be prone to measurement errors. In previous studies these two types of data are frequently analyzed separately where a mixed effects model is used for longitudinal data and a survival model is applied to event outcomes. The argument in favor of a joint model has been the efficient use of the data as the survival information goes into modeling the longitudinal process and vice versa. In this thesis, we present joint maximum likelihood methods, a two stage approach and time dependent covariate methods that link longitudinal data to survival data. First, we use simulation studies to explore and assess the performance of these methods with bias, accuracy and coverage probabilities. Then, we focus on four time dependent methods considering models that are unadjusted and adjusted for time. Finally, we consider mediation analysis for longitudinal and survival data. Mediation analysis is introduced and applied in a research framework based on genetic variants, longitudinal measures and disease risk. We implement accelerated failure time regression using the joint maximum likelihood approach (AFT-joint) and an accelerated failure time regression model using the observed longitudinal measures as time dependent covariates (AFT-observed) to assess the mediated effect. We found that the two stage approach (TSA) performed best at estimating the link parameter. The joint maximum likelihood methods that used the predicted values of the longitudinal measures, similar to the TSA, provided larger estimates. The time dependent covariate methods that used the observed longitudinal measures in the survival analysis underestimated the true estimates. The mediation results showed that the AFT-joint and the AFT-observed underestimated the mediated effect. Comparison of the methods in Framingham Heart Study data revealed similar patterns. We recommend adjusting for time when estimating the association parameter in time dependent Cox and logistic models. Additional work is needed for estimating the mediated effect with longitudinal and survival data

    Regression Models for Mixed Over-Dispersed Poisson and Continuous Clustered Data: Modeling BMI and Number of Cigarettes Smoked Per Day

    Get PDF
    Clustered data, multiple observations collected on the same experimental unit, is common in epidemiological studies. Bivariate outcome data is often the result of interest in two correlated response variables. An efficient method is presented for dealing with bivariate outcomes when one outcome is continuous and the other is a count using a simple transformation to handle over-dispersed Poisson data. A multilevel analysis was performed on data from the National Health Interview Survey (NHIS) with body mass index (BMI) and the number of cigarettes smoked per day (NCS) as responses. Results show that these random effects models yield misleading results in cases where the data is not transformed

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Total zinc intake may modify the glucose-raising effect of a zinc transporter (SLC30A8) variant: a 14-cohort meta-analysis.

    Get PDF
    OBJECTIVE: Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants. RESEARCH DESIGN AND METHODS: We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. RESULTS: We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: -0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: -0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant. CONCLUSIONS: Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels

    Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course

    Get PDF
    Genetic loci for body mass index (BMI) in adolescence and young adulthood, a period of high risk for weight gain, are understudied, yet may yield important insight into the etiology of obesity and early intervention. To identify novel genetic loci and examine the influence of known loci on BMI during this critical time period in late adolescence and early adulthood, we performed a two-stage meta-analysis using 14 genome-wide association studies in populations of European ancestry with data on BMI between ages 16 and 25 in up to 29 880 individuals. We identified seven independent loci (P < 5.0 × 10−8) near FTO (P = 3.72 × 10−23), TMEM18 (P = 3.24 × 10−17), MC4R (P = 4.41 × 10−17), TNNI3K (P = 4.32 × 10−11), SEC16B (P = 6.24 × 10−9), GNPDA2 (P = 1.11 × 10−8) and POMC (P = 4.94 × 10−8) as well as a potential secondary signal at the POMC locus (rs2118404, P = 2.4 × 10−5 after conditioning on the established single-nucleotide polymorphism at this locus) in adolescents and young adults. To evaluate the impact of the established genetic loci on BMI at these young ages, we examined differences between the effect sizes of 32 published BMI loci in European adult populations (aged 18-90) and those observed in our adolescent and young adult meta-analysis. Four loci (near PRKD1, TNNI3K, SEC16B and CADM2) had larger effects and one locus (near SH2B1) had a smaller effect on BMI during adolescence and young adulthood compared with older adults (P < 0.05). These results suggest that genetic loci for BMI can vary in their effects across the life course, underlying the importance of evaluating BMI at different age

    Genome-wide association meta-analysis of fish and EPA plus DHA consumption in 17 US and European cohorts

    Get PDF
    Background Regular fish and omega-3 consumption may have several health benefits and are recommended by major dietary guidelines. Yet, their intakes remain remarkably variable both within and across populations, which could partly owe to genetic influences. Objective To identify common genetic variants that influence fish and dietary eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA) consumption. Design We conducted genome-wide association (GWA) meta-analysis of fish (n = 86,467) and EPA+DHA (n = 62,265) consumption in 17 cohorts of European descent from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium Nutrition Working Group. Results from cohort-specific GWA analyses (additive model) for fish and EPA+DHA consumption were adjusted for age, sex, energy intake, and population stratification, and meta-analyzed separately using fixed-effect meta-analysis with inverse variance weights (METAL software). Additionally, heritability was estimated in 2 cohorts. Results Heritability estimates for fish and EPA+DHA consumption ranged from 0.13-0.24 and 0.12-0.22, respectively. A significant GWA for fish intake was observed for rs9502823 on chromosome 6: each copy of the minor allele (Freq(A) = 0.015) was associated with 0.029 servings/day (similar to 1 serving/month) lower fish consumption (P = 1.96x10(-8)). No significant association was observed for EPA+DHA, although rs7206790 in the obesity-associated FTO gene was among top hits (P = 8.18x10(-7)). Post-hoc calculations demonstrated 95% statistical power to detect a genetic variant associated with effect size of 0.05% for fish and 0.08% for EPA+DHA. Conclusions These novel findings suggest that non-genetic personal and environmental factors are principal determinants of the remarkable variation in fish consumption, representing modifiable targets for increasing intakes among all individuals. Genes underlying the signal at rs72838923 and mechanisms for the association warrant further investigation.Peer reviewe

    Gene x dietary pattern interactions in obesity : analysis of up to 68 317 adults of European ancestry

    Get PDF
    Obesity is highly heritable. Genetic variants showing robust associationswith obesity traits have been identified through genome wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist-hip ratio (WHR)-associated single nucleotide polymorphismswere genotyped, and genetic risk scores (GRS) were calculated in 18 cohorts of European ancestry (n = 68 317). Diet score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations of each GRS with BMI and BMI-adjustedWHR and (b) diet score modification of genetic associations with BMI and BMI-adjusted WHR. Nominally significant interactions (P = 0.006-0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS), two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective BMI-adjustedWHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.Peer reviewe
    corecore