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Abstract
Obesity is highly heritable. Genetic variants showing robust associationswith obesity traits have been identified through genome-
wide association studies. We investigated whether a composite score representing healthy diet modifies associations of these
variants with obesity traits. Totally, 32 body mass index (BMI)- and 14 waist–hip ratio (WHR)-associated single nucleotide
polymorphismswere genotyped, and genetic risk scores (GRS)were calculated in 18 cohorts of European ancestry (n = 68 317). Diet
score was calculated based on self-reported intakes of whole grains, fish, fruits, vegetables, nuts/seeds (favorable) and red/
processed meats, sweets, sugar-sweetened beverages and fried potatoes (unfavorable). Multivariable adjusted, linear regression
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within each cohort followed by inverse variance-weighted, fixed-effects meta-analysis was used to characterize: (a) associations
of each GRS with BMI and BMI-adjusted WHR and (b) diet score modification of genetic associations with BMI and BMI-adjusted
WHR. Nominally significant interactions (P = 0.006–0.04) were observed between the diet score and WHR-GRS (but not BMI-GRS),
two WHR loci (GRB14 rs10195252; LYPLAL1 rs4846567) and two BMI loci (LRRN6C rs10968576; MTIF3 rs4771122), for the respective
BMI-adjusted WHR or BMI outcomes. Although the magnitudes of these select interactions were small, our data indicated that
associations between genetic predisposition and obesity traits were stronger with a healthier diet. Our findings generate
interesting hypotheses; however, experimental and functional studies are needed to determine their clinical relevance.

Introduction
The recent obesity epidemic is widely believed to be driven by
typical Westernized lifestyles, consisting of diets low in nutrient
quality and high in calories, along with physical activity levels
insufficient to offset high-caloric consumption. Despite these
general relationships, people living within the same obesogenic
environment display substantial between-person variability in
body weight. Responses to overfeeding or underfeeding have
been shown to depend, at least in part, on genetic background
(1–3), suggesting that genetic susceptibility to weight change
interacts with a person’s environment.

Driven by large-scale meta-analyses of genome-wide associ-
ation study (GWAS) data, the past decade has witnessed rapid
progress in the discovery of genetic variants associated with obes-
ity-related traits (4,5). Although these associations are robust across
unique samples, there is little empirical evidence that lifestyle fac-
torsmodify theeffects associatedwith thesevariants. Several obser-
vational studies show that physical activity may attenuate the
genetic predisposition to obesity (6–11). However, it is not known
whether it is physical activityaloneorother lifestyle factors that cor-
relate with physical activity, such as diet, that underlie these inter-
actions (12–14). Characterizing how diet influences the associations
of genetic variants with obesity-related traits in observational stud-
ies may help determine the extent that dietary interventions can
offset a person’s genetic susceptibility to obesity, and further, may
inform the design of clinical trials that are specifically designed to
test gene–diet interactions (e.g. genotype-based recall studies).
Many published observational studies and clinical trials reporting

gene–lifestyle interaction were not designed to test such interac-
tions, and, thus, are underpowered (15).

We previously created a composite diet score, ranking indivi-
duals on their intakes of various foods to characterize a generally
healthy dietary pattern (16). This approach, compared with one
focused on single foods or nutrients, captures the highly complex
nature of diet and translates more intuitively to public health.
Using this score, we sought to determine whether the associa-
tions of established body mass index (BMI)- and waist–hip ratio
(WHR)-associated variants, individually or combined, are modi-
fied by a composite diet score in adults of European ancestry.

Results
CHARGE diet score

A higher, compared with lower, diet score (reflecting a healthier
diet) was associated with lower BMI and BMI-adjusted WHR in
models adjusted for potentially confounding physical character-
istics and lifestyle factors (Table 1; Supplementary Material,
Figs S1 and S2).

Associations of BMI-GRS and WHR-GRS with BMI
and WHR

The BMI-GRS and WHR-GRS were positively associated with BMI
and BMI-adjusted WHR, respectively (Table 2). Each additional
risk allele in the BMI-GRS was associated with an average of
0.116 kg/m2 [standard error (SE): 0.005] higher BMI (P = 1.97 × 10−124;

Table 1. Associations of diet score with BMI and WHR in all participants and by sex

Cohorts (N) N β 95% CI P-value I2

Outcome: BMI
Alla 19 68 317 −0.034 (−0.0419, −0.0266) <0.0001 83.9% (76.1%; 89.2%)
Allb 19 66 493 −0.017 (−0.0247, −0.0088) <0.0001 82.6% (73.9%; 88.4%)
Womena 17 46 916 −0.043 (−0.0540, −0.0316) <0.0001 72.5% (55.4%; 83.1%)
Womenb 17 45 796 −0.014 (−0.0257, −0.0025) 0.017 69.7% (50.3%; 81.6%)
Mena 18 29 992 −0.022 (−0.0320, −0.012) <0.0001 79.0% (67.4%; 86.4%)
Menb 18 29 228 −0.014 (−0.0245, −0.0039) 0.007 77.8% (65.3%; 85.8%)

Outcome: BMI-adjusted WHR
Allc 17 58 393 −0.0010 (−0.0011, −0.0009) <0.0001 21.7% (0%; 56.2%)
Alld 17 57 666 −0.0007 (−0.0008, −0.0006) <0.0001 0% (0%; 47.4%)
Womenc 15 41 176 −0.0009 (−0.0010, −0.0007) <0.0001 35.3% (0%; 65.1%)
Womend 15 40 116 −0.0006 (−0.0007, −0.0004) <0.0001 29.6% (0%; 62.1%)
Menc 16 25 809 −0.0012 (−0.0013, −0.001) <0.0001 0% (0%; 2.5%)
Mend 16 25 081 −0.0008 (−0.0010, −0.0007) <0.0001 0% (0%; 0%)

aAssociations adjusted for study center and/or family structure (as applicable), age, sex (where relevant) and kcal/day.
bAssociations adjusted for study center and/or family structure (as applicable), age, sex (where relevant), kcal/day, education, physical activity, smoking and alcohol

intake.
cAssociations adjusted for study center and/or family structure (as applicable), age, sex (where relevant), kcal/day and BMI.
dAssociations adjusted for study center and/or family structure (as applicable), age, sex (where relevant), kcal/day, BMI, education, physical activity, smoking and alcohol

intake.
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equivalent to 335 g for a person 1.7m tall), and each additional risk
allele in theWHR-GRSwasassociatedwitha 0.002 (SE: 0.0001) high-
er BMI-adjusted WHR (P = 2.1 × 10−62). Results were directionally
consistent between sexes, although the association of the WHR-
GRS with WHR was more evident in women than men (Table 2),
as expected given that the majority of these loci were discovered
in women (4). Individual single nucleotide polymorphism (SNP)
associations with BMI and BMI-adjusted WHR are reported
in the total sample of males and females in Supplementary
Material, Tables S3 and S4, respectively.

Gene × diet score interactions

Diet score did not modify the association of the BMI-GRS with
BMI (Pinteraction = 0.79; Table 3, Supplementary Material, Fig.
S3A), whereas there was nominal evidence that a higher diet
score (representing a healthier diet) strengthened the association
of WHR-GRS with BMI-adjusted WHR (βinteraction (SEinteraction) =
4.77E−5 (2.32E−5); Pinteraction = 0.04; Table 3, Supplementary Ma-
terial, Fig. S3B). In analyses modeling the interactions of each in-
dividual SNP and diet score on BMI and BMI-adjusted WHR, two
tests of interaction for BMI and two forWHRwere nominally stat-
istically significant (Table 3, Supplementary Material, Tables S5
and S6). All four of these interaction effect estimates (βs) were
also positive, again, indicating a stronger association between
genotype and the respective outcome with higher diet score:
LRRN6C rs10968576 (Pinteraction = 0.040) and MTIF3 rs4771122
(Pinteraction = 0.008) for BMI, and GRB14 rs10195252 (Pinteraction =
0.028) and LYPLAL11 rs4771122 (Pinteraction = 0.006) for BMI-
adjusted WHR. However, these diet score × SNP interactions

were not statistically significant after correction formultiple test-
ing (P < 0.0011 based on Bonferroni correction for 46 tests).

Discussion
We conducted a broad assessment of the role of a multifactorial
diet score on the genetic susceptibility to obesity by examining 32
common variants that have been reliably associated with BMI (5)
and an additional 14 common variants that have been associated
with BMI-adjusted WHR (4) in populations of European ancestry.
Our study is the largest of its kind to date, utilizing a centrally
designed and harmonized analysis plan and including cohorts
with relatively diverse dietary habits and prevalence of obesity.

Overall, we observed nominal evidence of interaction be-
tween the WHR-GRS and the diet score, such that the GRS effect
was stronger in those with higher versus lower diet scores. Simi-
larly, we observed suggestive evidence that healthy diet aug-
ments the associations of variants in or near four loci with BMI
(LRRN6C andMTIF3) and BMI-adjustedWHR (GRB14 and LYPLAL1).
While these observations counter the general hypothesis that
healthy behaviors can offset risk, it is important to note that al-
though genetic susceptibility was slightly more pronounced in
thosewith healthier diets, at any one level of genetic susceptibil-
ity, the BMI or BMI-adjustedWHRwas lower in thosewith health-
ier versus less-healthy diets (higher versus lower diet scores).
Nevertheless, the nature of these interactions differs from that
observed in studies on the modification of genetic effects by
other lifestyle factors, such as those reporting an attenuating in-
fluence of physical activity on genetic predisposition to obesity-
related traits (6–12,14). Proxy measures of both diet and physical

Table 2. Associations of BMI-GRS and WHR-GRS with BMI and WHR, respectively, in all participants and by sex

Group Marker Cohorts (N) N β SE P-value Direction of association across cohorts

Outcome: BMI
Alla BMI-GRS 18 57 075 0.116 0.005 1.97E−124 ++++++++++++++++++
Womena BMI-GRS 16 31 903 0.131 0.007 9.56E−72 ++++++++++++++−+
Mena BMI-GRS 17 25 172 0.102 0.007 1.36E−55 +++++++++++++++++

Outcome: BMI-adjusted WHR
Allb WHR-GRS 17 54 294 0.0016 0.0001 2.15E−62 +++++++++++++++−+
Womenb WHR-GRS 15 30 196 0.0022 0.0001 1.14E−48 +++++++++++++++
Menb WHR-GRS 16 24 098 0.0008 0.0001 1.55E−08 ++−+−+++++++++−+

aAssociations adjusted for study center and/or family structure (as applicable), age and sex (where relevant).
bAssociations adjusted for study center and/or family structure (as applicable), age, sex (where relevant) and BMI.

Table 3. Interactions of diet score with BMI-GRS, WHR-GRS or select (<0.05)a individual SNPs for BMI or WHR (women and men combined)

Nearest
gene

Risk
allele

βinteraction SE Pinteraction
a Direction of association

across cohorts

Healthy diet score × BMI-GRS for BMIb — — −0.0003 0.001 0.792 −−−+−−+−+−−++−−−−+
Healthy diet score × rs10968576 for BMIb LRRN6C G 0.0119 0.006 0.040 −++−−+−++−++++−+−+−
Healthy diet score × rs4771122 for BMIb MTIF3 G 0.017 0.006 0.008 +−−?+++++−+−++++−−+
Healthy diet score ×WHR-GRS for BMI-adjusted WHRc — — 4.77E−05 2.32E−05 0.040 +++++++−++++−−−−+
Healthy diet score × rs10195252 for BMI-adjusted WHRc GRB14 T 1.74E−04 0.00008 0.028 ++−+−+++++++++−−+
Healthy diet score × rs4846567 for BMI-adjusted WHRc LYPLAL1 G 2.31E−04 0.00008 0.006 ++−−−++++++++++++

The italicized values represents the P value.
aA priori alpha for interactions: diet score × SNP interactions <0.0018 for outcomeBMI, diet score ×WHR-GRS for outcomeWHR< 0.025 and diet score × SNP interactions for

outcome WHR< 0.0016.
bInteraction β adjusted for study center and/or family structure (as applicable), age, sex and kcal/day; see SupplementaryMaterial, Table S5 for interactions P > 0.05, which

ranged from 0.056 to 0.99.
cInteraction β adjusted for study center and/or family structure (as applicable), age, sex, kcal/day and BMI; see Supplementary Material, Table S6 for interactions P > 0.05,

which ranged from 0.16 to 0.98.
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activity contain an appreciable amount of randommeasurement
error (17), requiring large sample sizes to achieve adequate stat-
istical power. Most of the previous studies on physical activity
were larger than the present analysis, and it is also possible
that the true sizes of the interactions differ, with largermodifying
effects of physical activity than of diet. Sources of systematic
error (bias) also exist and are specifically relevant to studies of
obesity; in such studies, bias can occur, for example, by over- or
underreporting of dietary intake (or physical activity) in people
who are over- or underweight, in part, because participants
may be well aware of the links between lifestyle and body corpu-
lence, and this awarenessmay impact their response to lifestyle-
related questions. While the valid assessment of lifestyle is diffi-
cult in large cohorts, so too is differentiating the influence of the
observed lifestyle factors and their unmeasured correlates on
genetic susceptibility. Thus, further investigation is necessary
to elucidate these dynamics, both in terms of study design and
physiology, perhaps using more precise tools to assess diet or
in more powerful studies of different design (e.g. intervention
studies adequately powered to test gene–treatment interactions).

Previous studies involving the genetic regions highlighted in
our analyses [LYPLAL1 (18,19), MTIF3 (20,21), GRB14 (22,23) and
LRRN6C (24)] delineate their roles in physiology (see also Supple-
mentary Material, Table S7), but few studies have investigated
how diet might interact with these loci to influence body com-
position (25–28). While one longitudinal observation study re-
ported no interactions between various lifestyle factors and
LYPLAL1 variation (27), the Diabetes Prevention Program (DPP),
an intensive lifestyle intervention study, did observe evidence
of interaction on weight change at this locus (25). Specifically,
of the 12 loci examined in the DPP study, LYPLAL1 (rs2605100, r2

= 0.48 with rs4846567) was one of three loci for which the test of
interaction was statistically significant: the G (versus A) allele
conveyed greater short-termweight loss following lifestyle inter-
vention versus control intervention (∼0.34 kg per G allele from
baseline to 6months) (25). The Look AHEAD Study (26) examined
relationships between 12 obesity-associated gene variants, in-
cluding MTIF3 (rs7988412, r2 = 0.68 with rs4771122), and caloric
intake and eating patterns at baseline. The authors found no
association between the variant and baseline caloric intake
(P = 0.99) or the number of eating occasions (P = 0.62). However,
in a joint analysis from the DPP and Look AHEAD trials, all loci
studied in the present report were examined for interaction
with intensive lifestyle modification in relation to weight loss
(up to 4 years post-randomizations) (the DPP and Look AHEAD
Study groups, personal communication, P.W. Franks). Of the
loci studied, the one with the strongest evidence for gene–life-
style interaction on weight loss was the MTIF3 rs1885988 variant
(r2 = 0.72 with the rs4771122 variant studied here). There are no
other reports in the published literature on gene–diet interac-
tions for obesity at the LYPLAL1 or MTIF3 loci to our knowledge.

Like most clinically prescribed weight-conscious diets, both
the Look AHEAD and DPP lifestyle interventions were designed
around general principles of healthy eating, each focusing on cal-
orie and fat goals to guide healthy food selections. In a similar
sense, our diet score broadly captures several dietary characteris-
tics; therefore, neither the clinical trials data nor those from our
analyses allow us to speculate on the effectmodifying roles of in-
dividual dietary components. Hence, it is possible that a reduc-
tive approach (one focused on individual foods or nutrients)
might identify interactions of different magnitudes and direc-
tions that could be masked by combining these into a summary
score, such as we have done. However, studying each component
of the score separately would require many more hypothesis

tests, which we concluded that our study is not powered to ac-
commodate. Further, studies that characterize diet more broadly
(i.e. as multiple-component dietary patterns) are more easily ap-
plied to public health. Similarly, while the GRS allow assessment
of overall genetic susceptibility, studying the role of individual
variants within the GRS may provide insight into the biology
that potentially underlies any observed interactions.

Taking variants that were top ranked in marginal effects
GWAS meta-analyses and testing these for interactions with en-
vironmental exposures, aswe did here, is a pragmatic data reduc-
tion strategy; this is so because those variants (or the loci that
they tag) are, with high probability, likely to reside on causal
pathways for the traits of interest. Although this does not neces-
sarily mean that those variants should interact with environ-
mental exposures, many argue that it is a hypothesis worth
testing. In all likelihood, many other variants, which would not
be pickedup bymarginal effects tests, butwhichmodulate the ef-
fects of environmental exposures, exist (29).

The present report, alongside others, points to MTIF3 as a re-
gion thatmay interact with dietary factors to influence aspects of
adiposity. The remaining results suggest that diet, as represented
by our composite score, does not appreciably modify the effects
of several loci, singly or collectively, on BMI and BMI-adjusted
WHR. This area of research would benefit from future studies
that utilize more detailed and precise information on dietary in-
take, alternative study designs (such as interventions) and other
genetic regions that do not reach genome-wide statistical signifi-
cance in main effects GWAS.

Materials and Methods
This project was coordinated by the Nutrition Working Group of
the Cohorts for Heart and Aging Research in Genomic Epidemi-
ology (CHARGE) consortium (30). Each of the 18 contributing co-
horts executed analyses locally according to a uniform analysis
plan and shared summary statistics with a central data hub for
meta-analyses. One of these cohorts, DIetary, Life style and Genet-
ic determinantsofObesityandMetabolic syndrome (DILGOM), pro-
vided two independent samples (metabochip and GWAS samples)
that were analyzed separately. The 18 cohorts, providing up to
68 317 adults, are described in Table 4. Written informed consent
and institutional review board approvals were obtained locally by
each participating study. All studieswere conducted in accordance
with the Helsinki Declaration of 1975 as revised in 1983.

Anthropometry

BMI was calculated as weight in kilograms (kg) divided by height
in meters squared (m2). In all except two cohorts, body weight
and height were measured by clinical staff at the examination
sites; in the Nurses Health Study (NHS) and the Health Profes-
sionals Follow-Up Study (HPFS), height and body weight were
self-reported by questionnaire (correlation of self-reported with
directly measured values: r = 0.97) (31). Waist and hip circumfer-
ences, used to calculate WHR, were directly measured in 15 co-
horts, self-reported in two cohorts (NHS and HPFS), and
unavailable in two other cohorts (GLACIER and Health ABC).

Dietary intake and the diet score

Self-reported dietary intake was assessed by food frequency
questionnaire (13 cohorts), by a combination of food frequency
questionnaire and diet records (one cohort), or by diet records
(four cohorts) (Supplementary Material, Table S2). The methods
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Table 4. Clinical characteristic of the study participants by cohort

Cohort Abbreviation Country Exam
yearb

Nc BMI
(kg/m2)

WHR
(cm/cm)

Age (years) Sex Smoking Energy
intake
(kcal/day)

Diet Scorec,d

Mean SD Mean SD Mean SD %
Women

%
Current

Mean SD Range Mean Median

Atherosclerosis Risk in Communities Study ARIC USA 1987–1989 8586 26.7 4.6 0.92 0.08 54.2 5.7 53.7 24.4 1642 604 1–27 13.7 13
Cardiovascular Health Study CHS USA 1989–1990 2761 26.0 4.3 0.91 0.09 72.3 5.4 62.1 11.5 2016 648 1–27 13.7 14
DIetary, Life style, and Genetic determinants

of Obesity and Metabolic Syndrome
DILGOM

(metabochip
sample)

Finland 2007 3467 26.6 4.5 0.91 0.09 52.4 13.5 52.0 22.4 2313 783 3–27 13.8 14

DIetary, Life Style, and Genetic determinants
of Obesity and Metabolic Syndrome

DILGOM (GWAS
sample)

Finland as above 604 26.9 4.7 0.91 0.09 51.5 13.4 55.2 19.2 2533 912 2–25 13.7 14

Family Heart Study Family HS USA 1992 3185 27.4 5.3 0.91 0.09 51.4 13.6 53.6 14.7 1749 615 1–26 13.2 13
Framingham Offspring Study and Framingham

Third Generation Study
Framingham USA 1991–1995 5827 26.7 5.0 0.89 0.09 46.1 11.5 54.6 17.2 1982 662 0–26 13.7 14

Gene–Lifestyle interactions and Complex Traits
Involved in Elevated Disease Risk Study

GLACIER Sweden 1985–2007 5277 25.7 4.0 NA NA 49.2 8.6 61.4 22.3 1762 605 0–24d 11.6 12

Health 2000 Health 2000 Finland 2000–2001 1935 27.3 4.5 0.92 0.08 50.5 10.9 51.4 28.8 2245 783 2–27 13.7 14
Health, Aging and Body Composition Health ABC USA 1997–1998 1266 26.2 4.0 NA NA 74. 8 2.8 50.6 6.3 1807 599 3–27 15.7 16
Health Professionals Follow-Up Study HPFS USA 1986 896 25.0 2.7 0.94 0.05 55.0 8.3 0 10.6 2041 604 2–26 13.6 13
Helsinki Birth Cohort Study HBCS Finland 2001–2004 1584 27.4 4.4 0.92 0.09 61.5 2.9 58.4 24.4 2238 821 2–26 13.3 13
Invecchiare in Chianti InCHIANTI Italy 1997 991 27.1 4.1 0. 90 0.08 67.0 15.4 56.2 19.0 2036 595 2–20d 10.7 11
Malmö Diet and Cancer Study Malmö Sweden 1991–1996 20319e 25.4 3.8 0.85 0.09 58.5 7.6 59.4 27.6 2342 581 1–26 13.7 14
Multi-Ethnic Study of Atherosclerosis MESA USA 2000–2002 2146 27.5 4.9 0.92 0.08 62.6 10.3 52.4 11.0 1699 718 1–27 13.6 14
Nurses Health Study NHS USA 1986 1187 24.8 4.5 0.77 0.07 54.0 6.7 100 11.6 1787 510 1–25 13.5 13
Rotterdam Study Rotterdam The Netherlands 1990–1993 3932 26.2 3.6 0.90 0.09 67.1 7.6 58.3 23.4 1985 509 1–21d 10.1 10
The Hellenic Study of Interactions between

SNPs and Eating in Atherosclerosis
Susceptibility

THISEAS Greece 2006–2010 543 28.2 4.6 0.92 0.10 55.9 13.6 48.5 33.6 1778 1023 0–26 11.9 12

Uppsala Longitudinal Study of Adult Men ULSAM Sweden 1991–1995 932 26.0 3.2 0. 94 0.05 71.0 0.6 0 19.5 1774 449 3–24 13.5 13
Cardiovascular Risk in Young Finns Study YFS Finland 2007 1709 25.8 4.5 0.88 0.09 37.8 5.0 55.4 28.1 2386 769 2–26 13.6 14

Cohort names (as listed also in Table 4): ARIC, Atherosclerosis Risk In Communities Study; CHS, Cardiovascular Health Study; DILGOM, DIetary, Life Style, and Genetic determinants of Obesity and Metabolic Syndrome; Family HS,

FamilyHeart Study; Framingham, FraminghamOffspring Studyand FraminghamThirdGeneration Study; GLACIER, Gene–Lifestyle interactions andComplex Traits Involved in ElevatedDisease Risk Study; Health 2000 (no abbreviation

used); Health ABC, Health, Aging and Body Composition; HPFS, Health Professionals Follow-Up Study; HBCS, Helsinki Birth Cohort Study; InCHIANTI, Invecchiare in Chianti; Malmö, Malmö Diet and Cancer Study; MESA, Multi-Ethnic

Study of Atherosclerosis; NHS, Nurses Health Study; Rotterdam, Rotterdam Study; THISEAS, the Hellenic Study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility; ULSAM, Uppsala Longitudinal Study of Adult

Men; YFS, Cardiovascular Risk in Young Finns Study.
aMore information on populations and study designs can be found online Supplementary Material, Table S1.
bSingle examinations spanned several years (single time points); see Supplementary Material, Table S1 for more information.
cLargest contributing value; analysis-specific sample sizes presented in subsequent corresponding tables.
cDiet score = sumof quartile ranks of nine food groups (exceptions noted in Footnote e). Favorable: whole grains, fish, fruit, vegetables, nuts = 0–3 points per ascending quartile; Unfavorable: red or processedmeats, desserts and sweets,

sugar-sweetened beverages, fried potatoes = 0–3 points per descending quartile.
dDiet score in select cohorts is based on eight, instead of nine, food groups; no data collected on fried potatoes (InCHIANTI & Rotterdam) or nuts (GLACIER).
eSample varies widely in SNP-based analyses; see other tables.
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and rationale behind the construction of the CHARGE diet score
and its criterion validity for predicting fasting glucose and insulin
concentrations have been described in detail (16). Intakes of
foods/beverages were modeled in servings per day for all cohorts
except the sample from the Uppsala Longitudinal Study of Adult
Men (ULSAM), where grams per day were used. Briefly, the score
is based on the cohort-specific quartile ranks of nine food/bever-
age groups, where favorable food groups including fruits (not in-
cluding juices), vegetables (not including white potatoes), whole
grains, fish and nuts were assigned values of 0–3 according to
ascending quartile ranks, and unfavorable food/beverage groups
including red or processed meats, desserts and sweets, sugar-
sweetened beverages and fried potatoes were assigned values
of 0–3 according to descending quartile ranks. The resulting
score is a continuous variable with a theoretical range of 0–27,
where a higher diet score represents healthier food and beverage
choices (Table 4).

SNP selection, genotyping and genetic risk scores
(BMI-GRS and WHR-GRS)

At each SNP locus, genotypeswere coded as 0, 1 and 2 or imputed
to indicate the number of risk alleles for the 32 and 14 variants
that have been previously associated with BMI (5) and WHR (4),
respectively (SNPs listed in Supplementary Material, Table S3).
For each participant, a genetic risk score (GRS) was then calcu-
lated by summing up the number of risk alleles separately for
the BMI andWHR SNPs. In cohortswhere genotypeswere directly
assessed (i.e. not imputed), missing genotypes were estimated in
participants with >70% genotype information available by using
mean imputation, as described previously (32) (Supplementary
Material, Table S1).

The BMI-GRS was not calculated in the sample from DILGOM
that was genotyped using the Metabochip, owing to a high num-
ber ofmissing SNPs (with no suitable proxy). In three cohorts, the
BMI-GRS was based on 31 SNPs [Malmö Diet and Cancer Study
(MDC), the Hellenic Study of interactions between SNPs and Eat-
ing in Atherosclerosis Susceptibility (THISEAS) and Young Finns
Study (YFS)], owing to the absence of one SNP. TheWHR-GRSwas
calculated in all cohorts except thosewith noWHRdata (GLACIER
and Health ABC); in MDC, the WHR-GRS was based on 13 rather
than 14 SNPs, owing to the absence of one SNP. The approximate
mean (SD) across cohorts for the BMI-GRS and WHR-GRS were
28.2 (3.5) and 14.3 (2.4), respectively.

Statistical analysis

Statistical analyses were conducted within each study according
to a uniform analysis plan and subsequently meta-analyzed
(details below).

Associations of diet score with BMI and WHR
The associations between diet score and BMI andWHR were cal-
culated using multivariable linear regression, with the diet score
modeled as a continuous exposure, adjusting for age, sex (where
relevant), energy intake (kcal/day) and study center and/or popu-
lation substructure (as necessary); where WHR was the outcome
of interest, BMI was included as an additional covariate (BMI-
adjusted WHR). In a second model, associations were further
adjusted for education, physical activity, smoking and alcohol in-
take. Sex-stratified analyses were also conducted using these
models. Details concerning themethods used to assess and char-
acterize lifestyle within cohorts are provided in Supplementary
Material, Table S1.

Associations of GRS and individual loci with BMI and WHR
Associations of the individual BMI- and WHR-relevant SNPs and
BMI- and WHR-GRSs with their respective outcomes were also
calculated using multivariable linear regression, adjusting for
age, sex and field center and/or population substructure; as
with the individual SNP models, where WHR was the outcome
of interest, BMI was also included among covariates (BMI-
adjusted WHR). Sex-stratified analyses were also conducted for
BMI and WHR-adjusted BMI traits, respectively.

Diet score interactions with GRS and individual loci
Interactionswere assessed by including a product term (diet score
× SNP or diet score × GRS) in the regression models, adjusting for
age, sex, energy intake (kcal/day) and study center and/or popula-
tion substructure (as needed); as above, where WHR was the out-
come, models were additionally adjusted for BMI (BMI-adjusted
WHR). To maximize sample size (and by proxy, statistical power)
for interaction tests, sex-stratified analyses were not conducted.

Meta-analyses. Summary statistics from each cohort were com-
bined using inverse variance-weighted, fixed-effects meta-ana-
lysis. Meta-analyses for the diet score associations with BMI or
WHR were performed using the rmeta package (version 2.16) in
R 2.13.1 (http://www.R-project.org/). Meta-analyses of the inter-
actions and main effects of SNP and GRS tests were conducted
using METAL (http://www.sph.umich.edu/csg/abecasis/Metal/
index.html). Heterogeneity was assessed by the I2 statistic (33).
Meta-regression was used to explore sources of heterogeneity
in the meta-analyses using the metafor package in R. Meta-
regression included region (Europe versus USA) and sex ratio as
cohort-specific covariates. The meta-regression did not indicate
either region or sex ratio as sources of heterogeneity (P > 0.48).

Supplementary Material
Supplementary Material is available at HMG online.

Conflict of Interest statement: D.M. reports ad hoc honoraria or con-
sulting from Nutrition Impact, Amarin, Astra Zeneca, Boston
Heart Diagnostics and Life Sciences Research organization; and
scientific advisory board, Unilever North America. All other
authors declare no competing interests.

Funding
Infrastructure for the Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) consortium was supported in
part by the National Heart, Lung, and Blood Institute Grant No.
R01HL105756. Each cohort participating in the present investiga-
tion, conducted by the NutritionWorking Group within CHARGE,
was independently funded. J.A.N. was funded by a career devel-
opment award from the National Institutes of Health, National
Institute of Diabetes and Digestive and Kidney Diseases
(5K01DK082729-04). P.W.F. was funded by a Distinguished Young
Research Award in Medicine from the Swedish Research Council
and EXODIAB. Funding to pay the Open Access publication
charges for this article was provided by the Swedish Research
Council. Cohort-specific funding and acknowledgments follow
in the sections below.

Atherosclerosis Risk In Communities (ARIC) Study

The ARIC Study is carried out as a collaborative study supported
by National Heart, Lung, and Blood Institute contracts (HHSN

4734 | Human Molecular Genetics, 2015, Vol. 24, No. 16

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv186/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv186/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv186/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv186/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv186/-/DC1
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.sph.umich.edu/csg/abecasis/Metal/index.html
http://www.sph.umich.edu/csg/abecasis/Metal/index.html
http://www.sph.umich.edu/csg/abecasis/Metal/index.html
http://www.sph.umich.edu/csg/abecasis/Metal/index.html
http://www.sph.umich.edu/csg/abecasis/Metal/index.html
http://www.sph.umich.edu/csg/abecasis/Metal/index.html
http://www.sph.umich.edu/csg/abecasis/Metal/index.html
http://www.sph.umich.edu/csg/abecasis/Metal/index.html
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv186/-/DC1


268201100005C, HHSN268201100006C, HHSN268201100007C,
HHSN268201100008C, HHSN268201100009C, HHSN2682011000
10C, HHSN268201100011C and HHSN268201100012C), R01HL0
87641, R01HL59367 and R01HL086694; National Human Genome
Research Institute Contract U01HG004402; and National Insti-
tutes of Health Contract HHSN268200625226C. Infrastructure
was partly supported by Grant No. UL1RR025005, a component
of the National Institutes of Health andNIH Roadmap forMedical
Research. The authors thank the staff and participants of the
ARIC Study for their important contributions.

Cardiovascular Health Study (CHS)

This CHS research was supported by NHLBI Contracts HHSN
268201200036C, HHSN268200800007C, N01HC55222, N01HC85
079, N01HC85080, N01HC85081, N01HC85082, N01HC85083 and
N01HC85086; and NHLBI grants U01HL080295, R01HL087652,
R01HL105756, R01HL103612 and R01HL120393 with additional
contribution from the National Institute of Neurological Disor-
ders and Stroke (NINDS). Additional support was provided
through R01AG023629 from the National Institute on Aging
(NIA). A full list of principal CHS investigators and institutions
can be found at CHS-NHLBI.org. The provision of genotyping
data was supported in part by the National Center for Advancing
Translational Sciences, CTSI grant UL1TR000124, and the Nation-
al Institute of Diabetes and Digestive and Kidney Disease Dia-
betes Research Center (DRC) grant DK063491 to the Southern
California Diabetes Endocrinology Research Center. The content
is solely the responsibility of the authors and does not necessar-
ily represent the official views of the National Institutes of
Health.

DIetary, Life style, and Genetic determinants of Obesity
and Metabolic syndrome (DILGOM)

The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-
2013) under Grant Agreement no. 261433 (BioSHaRE). Academy
of Finland supported this study by grants 118065 (the DILGOM
study), 129322 (M.P., SALVE program ‘Pubgensense’), 136895,
141005 and 118065 (S.M.), 250207 (K.K.) and 139635 and 129494
(V.S.). M.P. and V.S. were supported by the Finnish Foundation
for Cardiovascular Research. K.K. was supported by the Orion-
Farmos Research Foundation. The DILGOM Study investigators
thank the many colleagues who contributed to collection and
phenotypic characterization of the clinical samples, and DNA ex-
traction and genotyping of the data, especially Eija Hämäläinen,
Minttu Sauramo, Outi Törnwall, Päivi Laiho and the staff from the
Genotyping Facilities at the Wellcome Trust Sanger Institute. In-
vestigators would also like to acknowledge those who agreed to
participate in the DILGOM Study.

Family Heart Study (FamHS)

FamHSwas supported by NIH grants R01-HL-087700 and R01-HL-
088215 (Michael A. Province, PI) fromNHLBI, and R01-DK-8925601
and R01-DK-075681 (I.B.B., PI) from NIDDK.

Framingham Offspring Study and Framingham Heart
Study-Third Generation Study (FHS)

FHS were conducted in part using data and resources from the
Framingham Heart Study of the National Heart Lung and Blood
Institute of the National Institutes of Health and Boston Univer-
sity School of Medicine. The analyses reflect intellectual input

and resource development from the FraminghamHeart Study in-
vestigators participating in the SNP Health Association Resource
(SHARe) project. This work was partially supported by the Na-
tional Heart, Lung and Blood Institute’s Framingham Heart
Study (Contract No. N01‐HC‐25195) and its contract with Affyme-
trix, Inc. for genotyping services (Contract No. N02‐HL‐6‐4278). A
portion of this research utilized the Linux Cluster for Genetic
Analysis (LinGA‐II) funded by the Robert Dawson Evans Endow-
ment of the Department of Medicine at Boston University School
of Medicine and Boston Medical Center. N.M.M. is supported by
the USDA agreement No. 1950-51530-011-00D.

Gene–lifestyle interactions and complex traits involved
in elevated disease risk (GLACIER)

The GLACIER Study was funded by project grants to P.W.F. from
Novo Nordisk, the Swedish Heart-Lung Foundation, the Swedish
Diabetes Association, Påhlssons Foundation, the Swedish Re-
search Council, Umeå University Career Development Award
and The Heart Foundation of Northern Sweden. F.R. was sup-
ported by a post-doctoral stipend from the Swedish Heart-Lung
Foundation; I.B. was funded by the Wellcome Trust (WT098051).
The GLACIER Study is nested within the Northern Swedish
Health and Disease Study cohort and the Västerbotten Interven-
tion Programme (VIP). The investigators are indebted to the study
participants who dedicated their time and samples to these stud-
ies. GLACIER investigators also thank the VIP and Umeå Medical
Biobank staff for biomedical data collection and preparation. We
specifically thank John Hutiainen, Åsa Ågren and Sara Nilsson
(Umeå Medical Biobank) for data organization; Kerstin Enquist
and Thore Johansson (Västerbottens County Council) for expert
technical assistance with DNA preparation; and David Hunter,
Patrice Soule andHardeep Ranu (Harvard School of Public Health)
for expert assistance with planning and undertaking genotyping
of GLACIER samples.

Health 2000

The Health 2000 Study was funded by the National Institute for
Health and Welfare (THL), the Finnish Centre for Pensions
(ETK), the Social Insurance Institution of Finland (KELA), the
Local Government Pensions Institution (KEVA) and the other or-
ganizations listed on the website of the survey (http://www.
terveys2000.fi). The authors would like to thank themany collea-
gues who contributed to collection and phenotypic characteriza-
tion of the clinical samples, andDNAextraction and genotyping of
the data, especially Eija Hämäläinen, Minttu Sauramo, Outi Törn-
wall, Päivi Laiho and the staff from the Genotyping Facilities at the
Wellcome Trust Sanger Institute. They would also like to acknow-
ledge those who agreed to participate in the Health 2000 Study.

Health, Aging and Body Composition (Health ABC) Study

The Health ABC Study is supported by the Intramural Research
Program of the National Institutes of Health, National Institute
on Aging and National Institute on Aging Contracts N01-AG-6-
2101, N01-AG-6-2103 and N01-AG-6-2106. The Health ABC gen-
ome-wide association study was funded by a National Institute
on Aging Grant, R01-AG032098, and genotyping services were
provided by the Center for Inherited Disease Research (CIDR).
CIDR is fully funded through a federal contract from the National
Institutes of Health to the Johns Hopkins University (Contract No.
HHSN268200782096C). Theworkof D.K.H.was supported bya K01
training grant (K01 AG030506).

Human Molecular Genetics, 2015, Vol. 24, No. 16 | 4735

http://www.terveys2000.fi
http://www.terveys2000.fi
http://www.terveys2000.fi
http://www.terveys2000.fi
http://www.terveys2000.fi
http://www.terveys2000.fi


Health Professionals Follow-up Study (HPFS)
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tine Wiman and Caisa Pöntinen for their excellent assistance
with genotyping. The SNP Technology Platform is supported by
Uppsala University, Uppsala University Hospital and the Swedish
Research Council for Infrastructures.

Young Finns Study (YFS)

YFS has been financially supported by the Academy of Finland:
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