7 research outputs found

    CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome

    Get PDF
    Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain, but it also has several other functions in the cellular metabolism. One of them is to function as an electron carrier in the reaction catalyzed by sulfide:quinone oxidoreductase (SQR), which catalyzes the first reaction in the hydrogen sulfide oxidation pathway. Therefore, SQR may be affected by CoQ deficiency. Using human skin fibroblasts and two mouse models with primary CoQ deficiency, we demonstrate that severe CoQ deficiency causes a reduction in SQR levels and activity, which leads to an alteration of mitochondrial sulfide metabolism. In cerebrum of Coq9R239X mice, the deficit in SQR induces an increase in thiosulfate sulfurtransferase and sulfite oxidase, as well as modifications in the levels of thiols. As a result, biosynthetic pathways of glutamate, serotonin, and catecholamines were altered in the cerebrum, and the blood pressure was reduced. Therefore, this study reveals the reduction in SQR activity as one of the pathomechanisms associated with CoQ deficiency syndrome

    CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome

    Get PDF
    Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain, but it also has several other functions in the cellular metabolism. One of them is to function as an electron carrier in the reaction catalyzed by sulfide:quinone oxidoreductase (SQR), which catalyzes the first reaction in the hydrogen sulfide oxidation pathway. Therefore, SQR may be affected by CoQ deficiency. Using human skin fibroblasts and two mouse models with primary CoQ deficiency, we demonstrate that severe CoQ deficiency causes a reduction in SQR levels and activity, which leads to an alteration of mitochondrial sulfide metabolism. In cerebrum of Coq9R239X mice, the deficit in SQR induces an increase in thiosulfate sulfurtransferase and sulfite oxidase, as well as modifications in the levels of thiols. As a result, biosynthetic pathways of glutamate, serotonin, and catecholamines were altered in the cerebrum, and the blood pressure was reduced. Therefore, this study reveals the reduction in SQR activity as one of the pathomechanisms associated with CoQ deficiency syndrome.This work was supported by grants from Ministerio de EconomĂ­a y Competitividad, Spain, and the ERDF (SAF2013-47761-R, SAF2014-55523-R, RD12/0042/0011 and SAF201565786-R), from the ConsejerĂ­a de EconomĂ­a, Innovación, Ciencia y Empleo, Junta de AndalucĂ­a (P10-CTS-6133), from the NIH (P01HD080642) and from the foundation “todos somos raros, todos somos únicos”. MLS is a predoctoral fellow from the ConsejerĂ­a de EconomĂ­a, Innovación, Ciencia y Empleo, Junta de AndalucĂ­a. LCL is supported by the “Ramón y Cajal” National Programme, Ministerio de EconomĂ­a y Competitividad, Spain (RYC-2011-07643)

    CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome

    Get PDF
    Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain, but it also has several other functions in the cellular metabolism. One of them is to function as an electron carrier in the reaction catalyzed by sulfide:quinone oxidoreductase (SQR), which catalyzes the first reaction in the hydrogen sulfide oxidation pathway. Therefore, SQR may be affected by CoQ deficiency. Using human skin fibroblasts and two mouse models with primary CoQ deficiency, we demonstrate that severe CoQ deficiency causes a reduction in SQR levels and activity, which leads to an alteration of mitochondrial sulfide metabolism. In cerebrum of Coq9R239X mice, the deficit in SQR induces an increase in thiosulfate sulfurtransferase and sulfite oxidase, as well as modifications in the levels of thiols. As a result, biosynthetic pathways of glutamate, serotonin, and catecholamines were altered in the cerebrum, and the blood pressure was reduced. Therefore, this study reveals the reduction in SQR activity as one of the pathomechanisms associated with CoQ deficiency syndrome.Ministerio de EconomĂ­a y CompetitividadERDF/SAF2013-47761-RERDF/SAF2014-55523-RERDF/RD12/0042/0011ERDF/SAF2015-65786-RJunta de AndalucĂ­aNIH/P01HD08064

    PromociĂłn turĂ­stica sostenible de la reserva de la biosfera Tajo-Tejo Internacional

    No full text
    Convocatoria proyectos de innovación de Extremadura 2020/2021Se describe un proyecto llevado acabo por varios centros educativos ubicados en la zona de la Reserva de la Biosfera Tajo-Tejo Internacional (RBTTI) que pretendía contribuir a la transformación sostenible del entorno mediante su conocimiento y promoción, implementando las competencias digital, social y ciudadana y la cultura emprendedora mediante metodologías activas como el aprendizaje servicio. Entre los objetivos principales del proyecto destacan: dar a conocer las implicaciones de la RBTTI; diseñar una campaña de promoción de la RBTTI mediante trípticos y vídeos promocionales; conocer la Reserva a través de las principales vías pecuarias y caminos que comunican los pueblos; descubrir los principales elementos socioculturales, históricos y tradicionales de la Reserva; valorar la importancia del territorio para conservar la biodiversidad: paisajes, ecosistemas, fauna y flora representativa; relacionar la trashumancia y las vías pecuarias como rasgos identificativos de la Reserva, vinculåndolo con la historia y rasgos culturales de los pueblos y valorar el emprendimiento y la iniciativa personal, el asosiacionismo y creación de redes de cooperación en y entre pueblos como motor de desarrolloExtremaduraES

    B. Sprachwissenschaft

    No full text

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore