571 research outputs found

    Evidence for fresh frost layer on the bare nucleus of comet Hale--Bopp at 32 AU distance

    Get PDF
    Here we report that the activity of comet Hale--Bopp ceased between late 2007 and March, 2009, at about 28 AU distance from the Sun. At that time the comet resided at a distance from the Sun that exceeded the freeze-out distance of regular comets by an order of magnitude. A Herschel Space Observatory PACS scan was taken in mid-2010, in the already inactive state of the nucleus. The albedo has been found to be surprisingly large (8.1±\pm0.9%{}), which exceeds the value known for any other comets. With re-reduction of archive HST images from 1995 and 1996, we confirm that the pre-perihelion albedo resembled that of an ordinary comet, and was smaller by a factor of two than the post-activity albedo. Our further observations with the Very Large Telescope (VLT) also confirmed that the albedo increased significantly by the end of the activity. We explain these observations by proposing gravitational redeposition of icy grains towards the end of the activity. This is plausible for such a massive body in a cold environment, where gas velocity is lowered to the range of the escape velocity. These observations also show that giant comets are not just the upscaled versions of the comets we know but can be affected by processes that are yet to be fully identified.Comment: 7 pages, 6 figures, accepted for publication in Ap

    A Multi-Wavelength Analysis of Dust and Gas in the SR 24S Transition Disk

    Get PDF
    We present new Atacama Large Millimeter/sub-millimeter Array (ALMA) 1.3 mm continuum observations of the SR 24S transition disk with an angular resolution 0.18"\lesssim0.18" (12 au radius). We perform a multi-wavelength investigation by combining new data with previous ALMA data at 0.45 mm. The visibilities and images of the continuum emission at the two wavelengths are well characterized by a ring-like emission. Visibility modeling finds that the ring-like emission is narrower at longer wavelengths, in good agreement with models of dust trapping in pressure bumps, although there are complex residuals that suggest potentially asymmetric structures. The 0.45 mm emission has a shallower profile inside the central cavity than the 1.3 mm emission. In addition, we find that the 13^{13}CO and C18^{18}O (J=2-1) emission peaks at the center of the continuum cavity. We do not detect either continuum or gas emission from the northern companion to this system (SR 24N), which is itself a binary system. The upper limit for the dust disk mass of SR 24N is 0.12M\lesssim 0.12\,M_{\bigoplus}, which gives a disk mass ratio in dust between the two components of Mdust,SR24S/Mdust,SR24N840M_{\mathrm{dust, SR\,24S}}/M_{\mathrm{dust, SR\,24N}}\gtrsim840. The current ALMA observations may imply that either planets have already formed in the SR 24N disk or that dust growth to mm-sizes is inhibited there and that only warm gas, as seen by ro-vibrational CO emission inside the truncation radii of the binary, is present.Comment: Accepted for publication in Ap

    Exact relationship between the entanglement entropies of XY and quantum Ising chains

    Full text link
    We consider two prototypical quantum models, the spin-1/2 XY chain and the quantum Ising chain and study their entanglement entropy, S(l,L), of blocks of l spins in homogeneous or inhomogeneous systems of length L. By using two different approaches, free-fermion techniques and perturbational expansion, an exact relationship between the entropies is revealed. Using this relation we translate known results between the two models and obtain, among others, the additive constant of the entropy of the critical homogeneous quantum Ising chain and the effective central charge of the random XY chain.Comment: 6 page

    Brachypodium distachyon as a model for defining the allergen potential of non-prolamin proteins

    Get PDF
    Epitope databases and the protein sequences of published plant genomes are suitable to identify some of the proteins causing food allergies and sensitivities. Brachypodium distachyon, a diploid wild grass with a sequenced genome and low prolamin content, is the closest relative of the allergen cereals, such as wheat or barley. Using the Brachypodium genome sequence, a workflow has been developed to identify potentially harmful proteins which may cause either celiac disease or wheat allergy-related symptoms. Seed tissue-specific expression of the potential allergens has been determined, and intact epitopes following an in silico digestion with several endopeptidases have been identified. Molecular function of allergen proteins has been evaluated using Gene Ontology terms. Biologically overrepresented proteins and potentially allergen protein families have been identified. © 2012 The Author(s)

    Multi-Omics strategies for decoding smoke-assisted germination pathways and seed vigour

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The success of seed germination and the successful establishment of seedlings across diverse environmental conditions depends on seed vigour, which is of both economic and ecologic importance. The smoke-derived exogenous compound karrikins (KARs) and the endogenous plant hormone strigolactone (SL) are two classes of butanolide-containing molecules that follow highly similar signalling pathways to control diverse biological activities in plants. Unravelling the precise mode-of-action of these two classes of molecules in model species has been a key research objective. However, the specific and dynamic expression of biomolecules upon stimulation by these signalling molecules remains largely unknown. Genomic and post-genomic profiling approaches have enabled mining and association studies across the vast genetic diversity and phenotypic plasticity. Here, we review the background of smoke-assisted germination and vigour and the current knowledge of how plants perceive KAR and SL signalling and initiate the crosstalk with the germination-associated hormone pathways. The recent advancement of ‘multi-omics’ applications are discussed in the context of KAR signalling and with relevance to their adoption for superior agronomic trait development. The remaining challenges and future opportunities for integrating multi-omics datasets associated with their application in KAR-dependent seed germination and abiotic stress tolerance are also discussed

    Entanglement entropy of aperiodic quantum spin chains

    Full text link
    We study the entanglement entropy of blocks of contiguous spins in non-periodic (quasi-periodic or more generally aperiodic) critical Heisenberg, XX and quantum Ising spin chains, e.g. in Fibonacci chains. For marginal and relevant aperiodic modulations, the entanglement entropy is found to be a logarithmic function of the block size with log-periodic oscillations. The effective central charge, c_eff, defined through the constant in front of the logarithm may depend on the ratio of couplings and can even exceed the corresponding value in the homogeneous system. In the strong modulation limit, the ground state is constructed by a renormalization group method and the limiting value of c_eff is exactly calculated. Keeping the ratio of the block size and the system size constant, the entanglement entropy exhibits a scaling property, however, the corresponding scaling function may be nonanalytic.Comment: 6 pages, 2 figure

    Mid-infrared interferometric variability of DG Tau: implications for the inner-disk structure

    Get PDF
    Context. DG Tau is a low-mass pre-main sequence star, whose strongly accreting protoplanetary disk exhibits a so-far enigmatic behavior: its mid-infrared thermal emission is strongly time-variable, even turning the 10 μ\mum silicate feature from emission to absorption temporarily. Aims. We look for the reason for the spectral variability at high spatial resolution and at multiple epochs. Methods. We study the temporal variability of the mid-infrared interferometric signal, observed with the VLTI/MIDI instrument at six epochs between 2011 and 2014. We fit a geometric disk model to the observed interferometric signal to obtain spatial information about the disk. We also model the mid-infrared spectra by template fitting to characterize the profile and time dependence of the silicate emission. We use physically motivated radiative transfer modeling to interpret the mid-infrared interferometric spectra. Results. The inner disk (r<1-3 au) spectra exhibit a 10 μ\mum absorption feature related to amorphous silicate grains. The outer disk (r>1-3 au) spectra show a crystalline silicate feature in emission, similar to the spectra of comet Hale-Bopp. The striking difference between the inner and outer disk spectral feature is highly unusual among T Tauri stars. The mid-infrared variability is dominated by the outer disk. The strength of the silicate feature changed by more than a factor of two. Between 2011 and 2014 the half-light radius of the mid-infrared-emitting region decreased from 1.15 to 0.7 au. Conclusions. For the origin of the absorption we discuss four possible explanations: a cold obscuring envelope, an accretion heated inner disk, a temperature inversion on the disk surface and a misaligned inner geometry. The silicate emission in the outer disk can be explained by dusty material high above the disk plane, whose mass can change with time, possibly due to turbulence in the disk.Comment: 16 pages, 13 figure

    The 2008 outburst of EX Lup - silicate crystals in motion

    Get PDF
    EX Lup is the prototype of the EXor class of eruptive young stars. These objects show optical outbursts which are thought to be related to runaway accretion onto the star. In a previous study we observed in-situ crystal formation in the disk of EX Lup during its latest outburst in 2008, making the object an ideal laboratory to investigate circumstellar crystal formation and transport. This outburst was monitored by a campaign of ground-based and Spitzer Space Telescope observations. Here we modeled the spectral energy distribution of EX Lup in the outburst from optical to millimeter wavelengths with a 2D radiative transfer code. Our results showed that the shape of the SED at optical wavelengths was more consistent with a single temperature blackbody than a temperature distribution. We also found that this single temperature component emitted 80-100 % of the total accretion luminosity. We concluded that a thermal instability, the most widely accepted model of EXor outbursts, was likely not the triggering mechanism of the 2008 outburst of EX Lup. Our mid-infrared Spitzer spectra revealed that the strength of all crystalline bands between 8 and 30 um increased right after the end of the outburst. Six months later, however, the crystallinity in the 10 um silicate feature complex decreased. Our modeling of the mid-infrared spectral evolution of EXLup showed that, although vertical mixing should be stronger during the outburst than in the quiescent phase, fast radial transport of crystals (e.g., by stellar/disk wind) was required to reproduce the observed mid-infrared spectra.Comment: Accepted for publication in ApJ, 37 pages, 11 figures, 2 table
    corecore