151 research outputs found
Components of the ribosome biogenesis pathway underlie establishment of telomere length set point in Arabidopsis
Telomeres cap the physical ends of eukaryotic chromosomes to ensure complete DNA replication and genome stability. Heritable natural variation in telomere length exists in yeast, mice, plants and humans at birth; however, major effect loci underlying such polymorphism remain elusive. Here, we employ quantitative trait locus (QTL) mapping and transgenic manipulations to identify genes controlling telomere length set point in a multi-parent Arabidopsis thaliana mapping population. We detect several QTL explaining 63.7% of the total telomere length variation in the Arabidopsis MAGIC population. Loss-of-function mutants of the NOP2A candidate gene located inside the largest effect QTL and of two other ribosomal genes RPL5A and RPL5B establish a shorter telomere length set point than wild type. These findings indicate that evolutionarily conserved components of ribosome biogenesis and cell proliferation pathways promote telomere elongation
Optic chiasm measurements may be useful markers of anterior optic pathway degeneration in neuromyelitis optica spectrum disorders
OBJECTIVES: We aimed to evaluate optic chiasm (OC) measures as potential imaging marker for anterior optic pathway damage assessment in the context of neuromyelitis optica spectrum disorders (NMOSD). MATERIALS AND METHOD: This cross-sectional study included 39 patients exclusively with aquaporin 4-IgG seropositive NMOSD of which 25 patients had a history of optic neuritis (NMOSD-ON) and 37 age- and sex-matched healthy controls (HC). OC heights, width, and area were measured using standard 3D T1-weighted MRI. Sensitivity of these measures to detect neurodegeneration in the anterior optic pathway was assessed in receiver operating characteristics analyses. Correlation coefficients were used to assess associations with structural measures of the anterior optic pathway (optic nerve dimensions, retinal ganglion cell loss) and clinical measures (visual function and disease duration). RESULTS: OC heights and area were significantly smaller in NMOSD-ON compared to HC (NMOSD-ON vs. HC p < 0.0001). An OC area smaller than 22.5 mm(2) yielded a sensitivity of 0.92 and a specificity of 0.92 in separating chiasms of NMOSD-ON from HC. OC area correlated well with structural and clinical measures in NMOSD-ON: optic nerve diameter (r = 0.4, p = 0.047), peripapillary retinal nerve fiber layer thickness (r = 0.59, p = 0.003), global visual acuity (r = − 0.57, p = 0.013), and diseases duration (r = − 0.5, p = 0.012). CONCLUSION: Our results suggest that OC measures are promising and easily accessible imaging markers for the assessment of anterior optic pathway damage. KEY POINTS: (1) Optic chiasm dimensions were smaller in neuromyelitis optica spectrum disorder patients compared to healthy controls. (2) Optic chiasm dimensions are associated with retinal measures and visual dysfunction. (3) The optic chiasm might be used as an easily accessible imaging marker of neurodegeneration in the anterior optic pathway with potential functional relevance
Rationale, design and conduct of a randomised controlled trial evaluating a primary care-based complex intervention to improve the quality of life of heart failure patients: HICMan (Heidelberg Integrated Case Management) : study protocol
Background: Chronic congestive heart failure (CHF) is a complex disease with rising prevalence, compromised quality of life (QoL), unplanned hospital admissions, high mortality and therefore high burden of illness. The delivery of care for these patients has been criticized and new strategies addressing crucial domains of care have been shown to be effective on patients' health outcomes, although these trials were conducted in secondary care or in highly organised Health Maintenance Organisations. It remains unclear whether a comprehensive primary care-based case management for the treating general practitioner (GP) can improve patients' QoL. Methods/Design: HICMan is a randomised controlled trial with patients as the unit of randomisation. Aim is to evaluate a structured, standardized and comprehensive complex intervention for patients with CHF in a 12-months follow-up trial. Patients from intervention group receive specific patient leaflets and documentation booklets as well as regular monitoring and screening by a prior trained practice nurse, who gives feedback to the GP upon urgency. Monitoring and screening address aspects of disease-specific selfmanagement, (non)pharmacological adherence and psychosomatic and geriatric comorbidity. GPs are invited to provide a tailored structured counselling 4 times during the trial and receive an additional feedback on pharmacotherapy relevant to prognosis (data of baseline documentation). Patients from control group receive usual care by their GPs, who were introduced to guidelineoriented management and a tailored health counselling concept. Main outcome measurement for patients' QoL is the scale physical functioning of the SF-36 health questionnaire in a 12-month follow-up. Secondary outcomes are the disease specific QoL measured by the Kansas City Cardiomyopathy questionnaire (KCCQ), depression and anxiety disorders (PHQ-9, GAD-7), adherence (EHFScBS and SANA), quality of care measured by an adapted version of the Patient Chronic Illness Assessment of Care questionnaire (PACIC) and NTproBNP. In addition, comprehensive clinical data are collected about health status, comorbidity, medication and health care utilisation. Discussion: As the targeted patient group is mostly cared for and treated by GPs, a comprehensive primary care-based guideline implementation including somatic, psychosomatic and organisational aspects of the delivery of care (HICMAn) is a promising intervention applying proven strategies for optimal care. Trial registration: Current Controlled Trials ISRCTN30822978
Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors
Stoichiometrically-controlled alkali-activated pastes containing calcium-(sodium) aluminosilicate hydrate (C-(N)-A-S-H) and sodium aluminosilicate hydrate (N-A-S-H) gels are produced by alkali-activation of high-purity synthetic calcium aluminosilicate powders. These powders are chemically comparable to the glass in granulated blast furnace slag, but without interference from minor constituents. The physiochemical characteristics of these gels depend on precursor chemical composition. Increased Ca content of the precursor promotes formation of low-Al, high-Ca C-(N)-A-S-H with lower mean chain length as determined by quantification of solid state nuclear magnetic resonance spectra, and less formation of calcium carboaluminate ‘Alumino-ferrite mono’ (AFm) phases. Increased Al content promotes Al inclusion and reduced crosslinking within C-(N)-A-S-H, increased formation of calcium carboaluminate AFm phases, and formation of an additional N-A-S-H gel. Small changes in precursor composition can induce significant changes in phase evolution, nanostructure and physical properties, providing a novel route to understand microstructural development in alkali-activated binders and address key related durability issues
Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1
A primary aim of RILEM TC 267-TRM: “Tests for Reactivity of Supplementary Cementitious Materials (SCMs)” is to compare and evaluate the performance of conventional and novel SCM reactivity test methods across a wide range of SCMs. To this purpose, a round robin campaign was organized to investigate 10 different tests for reactivity and 11 SCMs covering the main classes of materials in use, such as granulated blast furnace slag, fly ash, natural pozzolan and calcined clays. The methods were evaluated based on the correlation to the 28 days relative compressive strength of standard mortar bars containing 30% of SCM as cement replacement and the interlaboratory reproducibility of the test results. It was found that only a few test methods showed acceptable correlation to the 28 days relative strength over the whole range of SCMs. The methods that showed the best reproducibility and gave good correlations used the R3 model system of the SCM and Ca(OH)2, supplemented with alkali sulfate/carbonate. The use of this simplified model system isolates the reaction of the SCM and the reactivity can be easily quantified from the heat release or bound water content. Later age (90 days) strength results also correlated well with the results of the IS 1727 (Indian standard) reactivity test, an accelerated strength test using an SCM/Ca(OH)2-based model system. The current standardized tests did not show acceptable correlations across all SCMs, although they performed better when latently hydraulic materials (blast furnace slag) were excluded. However, the Frattini test, Chapelle and modified Chapelle test showed poor interlaboratory reproducibility, demonstrating experimental difficulties. The TC 267-TRM will pursue the development of test protocols based on the R3 model systems. Acceleration and improvement of the reproducibility of the IS 1727 test will be attempted as well
Natural Variation in Arabidopsis thaliana as a Tool for Highlighting Differential Drought Responses
To test whether natural variation in Arabidopsis could be used to dissect out the genetic basis of responses to drought stress, we characterised a number of accessions. Most of the accessions belong to a core collection that was shown to maximise the genetic diversity captured for a given number of individual accessions in Arabidopsis thaliana. We measured total leaf area (TLA), Electrolyte Leakage (EL), Relative Water Content (RWC), and Cut Rosette Water Loss (CRWL) in control and mild water deficit conditions. A Principal Component Analysis revealed which traits explain most of the variation and showed that some accessions behave differently compared to the others in drought conditions, these included Ita-0, Cvi-0 and Shahdara. This study relied on genetic variation found naturally within the species, in which populations are assumed to be adapted to their environment. Overall, Arabidopsis thaliana showed interesting phenotypic variations in response to mild water deficit that can be exploited to identify genes and alleles important for this complex trait
Rationale and design of a randomised controlled trial evaluating the effectiveness of an exercise program to improve the quality of life of patients with heart failure in primary care : the EFICAR study protocol
Background: Quality of life (QoL) decreases as heart failure worsens, which is one of the greatest worries of these patients. Physical exercise has been shown to be safe for people with heart failure. Previous studies have tested heterogeneous exercise programs using different QoL instruments and reported inconsistent effects on QoL. The aim of this study is to evaluate the effectiveness of a new exercise program for people with heart failure (EFICAR), additional to the recommended optimal treatment in primary care, to improve QoL, functional capacity and control of cardiovascular risk factors. Methods/Design: Multicenter clinical trial in which 600 patients with heart failure in NYHA class II-IV will be randomized to two parallel groups: EFICAR and control. After being recruited, through the reference cardiology services, in six health centres from the Spanish Primary Care Prevention and Health Promotion Research Network (redIAPP), patients are followed for 1 year after the beginning of the intervention. Both groups receive the optimized treatment according to the European Society of Cardiology guidelines. In addition, the EFICAR group performs a 3 month supervised progressive exercise program with an aerobic (high-intensity intervals) and a strength component; and the programme continues linked with community resources for 9 months. The main outcome measure is the change in health-related QoL measured by the SF-36 and the Minnesota Living with Heart Failure Questionnaires at baseline, 3, 6 and 12 months. Secondary outcomes considered are changes in functional capacity measured by the 6-Minute Walking Test, cardiac structure (B-type natriuretic peptides), muscle strength and body composition. Both groups will be compared on an intention to treat basis, using multi-level longitudinal mixed models. Sex, age, social class, co-morbidity and cardiovascular risk factors will be considered as potential confounding and predictor variables. Discussion: A key challenges of this study is to guarantee the safety of the patients; however, the current scientific evidence supports the notion of there being no increase in the risk of decompensation, cardiac events, hospitalizations and deaths associated with exercise, but rather the opposite. Safety assurance will be based on an optimized standardised pharmacological therapy and health education for all the participants
Cerebral gene expression in response to single or combined gestational exposure to methylmercury and selenium through the maternal diet
Controversy remains regarding the safety of consuming certain types of seafood, particularly during pregnancy. While seafood is rich in vital nutrients, it may also be an important source of environmental contaminants such as methylmercury (MeHg). Selenium (Se) is one essential element present in seafood, hypothesised to ameliorate MeHg toxicity. The aim of the present study was to ascertain the impact of Se on MeHg-induced cerebral gene expression in a mammalian model. Microarray analysis was performed on brain tissue from 15-day-old mice that had been exposed to MeHg throughout development via the maternal diet. The results from the microarray analysis were validated using qPCR. The exposure groups included: MeHg alone (2.6 mg kg−1), Se alone (1.3 mg kg−1), and MeHg + Se. MeHg was presented in a cysteinate form, and Se as Se–methionine, one of the elemental species occurring naturally in seafood. Eight genes responded to Se exposure alone, five were specific to MeHg, and 63 were regulated under the concurrent exposure of MeHg and Se. Significantly enriched functional classes relating to the immune system and cell adhesion were identified, highlighting potential ameliorating mechanisms of Se on MeHg toxicity. Key developmental genes, such as Wnt3 and Sparcl1, were also identified as putative ameliorative targets. This study, utilising environmentally realistic forms of toxicants, delivered through the natural route of exposure, in association with the power of transcriptomics, highlights significant novel information regarding putative pathways of selenium and MeHg interaction in the mammalian brain
- …