54 research outputs found

    Advance booking across channels: The effects on dynamic pricing

    Get PDF
    This research analyzes the effects of advance booking and channel type on hotel rates. While this relationship has been addressed in the literature, most studies take a partial approach by focusing only on one distribution channel or one destination. This study fills this gap by analyzing the price dynamics for four channels and multiple destinations. The data set consists of 39,363 bookings for 1085 hotels over 27 consecutive months. We used two-stage least squares to solve potential endogeneity issues, and the results proved that distribution channel, hotel type and hotel size have an influence on the effect of advance booking on hotel rates. Critical managerial implications are discussed

    Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment

    Get PDF
    Purpose. This work presents the protocol carried out in the development and validation of an augmented reality system which was installed in an operating theatre to help surgeons with trocar placement during laparoscopic surgery. The purpose of this validation is to demonstrate the improvements that this system can provide to the field of medicine, particularly surgery. Method. Two experiments that were noninvasive for both the patient and the surgeon were designed. In one of these experiments the augmented reality system was used, the other one was the control experiment, and the system was not used. The type of operation selected for all cases was a cholecystectomy due to the low degree of complexity and complications before, during, and after the surgery. The technique used in the placement of trocars was the French technique, but the results can be extrapolated to any other technique and operation. Results and Conclusion. Four clinicians and ninety-six measurements obtained of twenty-four patients (randomly assigned in each experiment) were involved in these experiments.The final results show an improvement in accuracy and variability of 33% and 63%, respectively, in comparison to traditional methods, demonstrating that the use of an augmented reality system offers advantages for trocar placement in laparoscopic surgery.This work has been supported by Centro para el Desarrollo Tecnologico Industrial (CDTI) under the project Oncotic (IDI-20101153) and the Hospital Clinica Benidorm(HCB) and partially supported by the Ministry of Education and Science of Spain (TIN2010-20999-C04-01), the project Consolider-C (SEJ2006-14301/PSIC) and the "CIBER of Physiopathology of Obesity Nutrition, an initiative of ISCIII" Prometheus and Excellence Research Program (Generalitat Valenciana, Department of Education, 2008-157). The authors would like to express their gratitude to the Hospital Clinica Benidorm and to the Hospital Univeritari i Politecnic la Fe (especially the surgical team) for their participation and involvement in this work.López-Mir, F.; Naranjo Ornedo, V.; Fuertes Cebrián, JJ.; Alcañiz Raya, ML.; Bueno, J.; Pareja, E. (2013). Design and Validation of an Augmented Reality System for Laparoscopic Surgery in a Real Environment. BioMed Research International. 2013:1-12. https://doi.org/10.1155/2013/758491S1122013Rowe, C. K., Pierce, M. W., Tecci, K. C., Houck, C. S., Mandell, J., Retik, A. B., & Nguyen, H. T. (2012). A Comparative Direct Cost Analysis of Pediatric Urologic Robot-Assisted Laparoscopic Surgery Versus Open Surgery: Could Robot-Assisted Surgery Be Less Expensive? Journal of Endourology, 26(7), 871-877. doi:10.1089/end.2011.0584Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385. doi:10.1162/pres.1997.6.4.355Shuhaiber, J. H. (2004). Augmented Reality in Surgery. Archives of Surgery, 139(2), 170. doi:10.1001/archsurg.139.2.170Kersten-Oertel, M., Jannin, P., & Collins, D. L. (2012). DVV: A Taxonomy for Mixed Reality Visualization in Image Guided Surgery. IEEE Transactions on Visualization and Computer Graphics, 18(2), 332-352. doi:10.1109/tvcg.2011.50Cannon, J. W., Stoll, J. A., Selha, S. D., Dupont, P. E., Howe, R. D., & Torchiana, D. F. (2003). Port placement planning in robot-assisted coronary artery bypass. IEEE Transactions on Robotics and Automation, 19(5), 912-917. doi:10.1109/tra.2003.817502Adhami, L., & Coste-Manirei, E. (2003). Optimal planning for minimally invasive surgical robots. IEEE Transactions on Robotics and Automation, 19(5), 854-863. doi:10.1109/tra.2003.817061Bichlmeier, C., Heining, S. M., Feuerstein, M., & Navab, N. (2009). The Virtual Mirror: A New Interaction Paradigm for Augmented Reality Environments. IEEE Transactions on Medical Imaging, 28(9), 1498-1510. doi:10.1109/tmi.2009.2018622Feuerstein, M., Mussack, T., Heining, S. M., & Navab, N. (2008). Intraoperative Laparoscope Augmentation for Port Placement and Resection Planning in Minimally Invasive Liver Resection. IEEE Transactions on Medical Imaging, 27(3), 355-369. doi:10.1109/tmi.2007.907327Abdominal and Laparoscopic Surgery. (2010). International Journal of Computer Assisted Radiology and Surgery, 5(S1), 122-130. doi:10.1007/s11548-010-0446-3Ferrari, V., Megali, G., Troia, E., Pietrabissa, A., & Mosca, F. (2009). A 3-D Mixed-Reality System for Stereoscopic Visualization of Medical Dataset. IEEE Transactions on Biomedical Engineering, 56(11), 2627-2633. doi:10.1109/tbme.2009.2028013McSherry, C. K. (1989). Cholecystectomy: The gold standard. The American Journal of Surgery, 158(3), 174-178. doi:10.1016/0002-9610(89)90246-8Kum, C.-K., Eypasch, E., Aljaziri, A., & Troidl, H. (1996). Randomized comparison of pulmonary function after the ‘French’ and ‘American’ techniques of laparoscopic cholecystectomy. British Journal of Surgery, 83(7), 938-941. doi:10.1002/bjs.1800830716Mischkowski, R. A., Zinser, M. J., Kübler, A. C., Krug, B., Seifert, U., & Zöller, J. E. (2006). Application of an augmented reality tool for maxillary positioning in orthognathic surgery – A feasibility study. Journal of Cranio-Maxillofacial Surgery, 34(8), 478-483. doi:10.1016/j.jcms.2006.07.862Kawamata, T., Iseki, H., Shibasaki, T., & Hori, T. (2002). Endoscopic Augmented Reality Navigation System for Endonasal Transsphenoidal Surgery to Treat Pituitary Tumors: Technical Note. Neurosurgery, 50(6), 1393-1397. doi:10.1097/00006123-200206000-00038Vogt, S., Khamene, A., & Sauer, F. (2006). Reality Augmentation for Medical Procedures: System Architecture, Single Camera Marker Tracking, and System Evaluation. International Journal of Computer Vision, 70(2), 179-190. doi:10.1007/s11263-006-7938-1Nicolau, S., Soler, L., Mutter, D., & Marescaux, J. (2011). Augmented reality in laparoscopic surgical oncology. Surgical Oncology, 20(3), 189-201. doi:10.1016/j.suronc.2011.07.002Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334. doi:10.1109/34.888718Martín-Gutiérrez, J., Luís Saorín, J., Contero, M., Alcañiz, M., Pérez-López, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34(1), 77-91. doi:10.1016/j.cag.2009.11.003Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441. doi:10.1137/011103

    Markerless monocular tracking system for guided external eye surgery

    Full text link
    This paper presents a novel markerless monocular tracking system aimed at guiding ophthalmologists during external eye surgery. This new tracking system performs a very accurate tracking of the eye by detecting invariant points using only textures that are present in the sclera, i.e., without using traditional features like the pupil and/or cornea reflections, which remain partially or totally occluded in most surgeries. Two known algorithms that compute invariant points and correspondences between pairs of images were implemented in our system: Scalable Invariant Feature Transforms (SIFT) and Speed Up Robust Features (SURF). The results of experiments performed on phantom eyes show that, with either algorithm, the developed system tracks a sphere at a 360◦ rotation angle with an error that is lower than 0.5%. Some experiments have also been carried out on images of real eyes showing promising behavior of the system in the presence of blood or surgical instruments during real eye surgery. © 2014 Elsevier Ltd. All rights reserved.Monserrat Aranda, C.; Rupérez Moreno, MJ.; Alcañiz Raya, ML.; Mataix, J. (2014). Markerless monocular tracking system for guided external eye surgery. Computerized Medical Imaging and Graphics. 38(8):785-792. doi:10.1016/j.compmedimag.2014.08.001S78579238

    Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons

    Get PDF
    CXCL12/CXCR4 signaling has been reported to regulate three essential processes for the establishment of neural networks in different neuronal systems: neuronal migration, cell positioning and axon wiring. However, it is not known whether it regulates the development of A9-A10 tyrosine hydroxylase positive (TH+) midbrain dopaminergic (mDA) neurons. We report here that Cxcl12 is expressed in the meninges surrounding the ventral midbrain (VM), whereas CXCR4 is present in NURR1+ mDA precursors and mDA neurons from E10.5 to E14.5. CXCR4 is activated in NURR1+ cells as they migrate towards the meninges. Accordingly, VM meninges and CXCL12 promoted migration and neuritogenesis of TH+ cells in VM explants in a CXCR4-dependent manner. Moreover, in vivo electroporation of Cxcl12 at E12.5 in the basal plate resulted in lateral migration, whereas expression in the midline resulted in retention of TH+ cells in the IZ close to the midline. Analysis of Cxcr4-/- mice revealed the presence of VM TH+ cells with disoriented processes in the intermediate zone (IZ) at E11.5 and marginal zone (MZ) at E14. Consistently, pharmacological blockade of CXCR4 or genetic deletion of Cxcr4 resulted in an accumulation of TH+ cells in the lateral aspect of the IZ at E14, indicating that CXCR4 is required for the radial migration of mDA neurons in vivo. Altogether, our findings demonstrate that CXCL12/CXCR4 regulates the migration and orientation of processes in A9-A10 mDA neurons.This work was funded by the Swedish Research Council [VR projects: DBRM, 2008:2811, 2011-3116 and 2011-3318]; by the Swedish Foundation for Strategic Research (SRL program); by the Knut and Alice Wallenberg Foundation (CLICK); by the European Commission (NeuroStemcell and DDPD-Genes) and Karolinska Institutet (SFO Thematic Center in Stem cells and Regenerative Medicine) to E.A.; and by the European Commission [mdDANeurodev 222999] to O.M. S.Y. was supported by grants from KID and Chinese Scholarship Council.Peer reviewe

    Trabajo de coordinación para la implementación del cuarto curso del Grado en Química

    Get PDF
    En el curso 2013-14 se implantará el cuarto y último curso del Grado en Química. La experiencia adquirida durante la implementación de los tres primeros cursos ha puesto de manifiesto la conveniencia de realizar un proceso de coordinación entre los profesores de las diferentes asignaturas que garantice la consecución de las competencias previstas en la memoria del título. Por ello, se ha creado en la Facultad de Ciencias de la Universidad de Alicante una red de investigación en docencia universitaria que ha estado trabajando desde el inicio del presente curso académico en este tema. Dicha red está constituida por el Vicedecano de Ordenación Académica de la Facultad de Ciencias, la Coordinadora Académica de Química y los profesores coordinadores de todas las asignaturas del 4º curso del grado (excepto Prácticas Externas y Trabajo Fin de Grado). En esta comunicación se presentarán los resultados del trabajo de investigación realizado por estos profesores que ha permitido elaborar las guías docentes de las asignaturas, planificar y coordinar las actividades a realizar para que los alumnos adquieran las competencias transversales, realizar un cronograma de actividades de evaluación y otro de prácticas de laboratorio que asegure la distribución homogénea del trabajo del alumno durante el curso académico

    Interplay of Linker Functionalization and Hydrogen Adsorption in the Metal–Organic Framework MIL-101

    Get PDF
    Functionalization of metal–organic frameworks results in higher hydrogen uptakes owing to stronger hydrogen–host interactions. However, it has not been studied whether a given functional group acts on existing adsorption sites (linker or metal) or introduces new ones. In this work, the effect of two types of functional groups on MIL-101 (Cr) is analyzed. Thermal-desorption spectroscopy reveals that the −Br ligand increases the secondary building unit’s hydrogen affinity, while the −NH2 functional group introduces new hydrogen adsorption sites. In addition, a subsequent introduction of −Br and −NH2 ligands on the linker results in the highest hydrogen-store interaction energy on the cationic nodes. The latter is attributed to a push-and-pull effect of the linkers

    Investigació i gènere a la Universitat Jaume I 2016

    Get PDF
    Actes del II Congrès d’Investigació i Gènere a la Universitat Jaume I, celebrat l’11 de maig de 2016 a la Universitat Jaume I.La igualtat de dones i homes, tot i ser un principi jurídic universal recollit en normes internacionals i nacionals i que es troba en la base dels sistemes democràtics, és difícil d'aconseguir. Per això hi ha un consens generalitzat sobre la necessitat d'impulsar actuacions transversals i accions positives en tots els àmbits. És en aquest context en el qual van sorgir, entre altres mesures, l'obligatorietat legal de crear plans d'igualtat en organitzacions amb més de 250 treballadors (Llei orgànica 3/2007 per a la igualtat efectiva de dones i homes) i en el cas concret de les universitats espanyoles, de considerar-les part de la seua estructura d'organització segons s'estableix en la disposició addicional dotzena de la Llei orgànica 4/2007, de 12 d'abril, d'universitats. La Universitat Jaume I presenta en aquesta publicació les actes del II Congrés d’Investigació i Gènere que van tenir lloc a l'UJI i que inclouen treballs de final de grau i de màster, tesis doctorals, projectes d'investigació i activitat docent de grau

    Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters

    Get PDF
    [EN] Background: Even though virtual reality (VR) is increasingly used in rehabilitation, the implementation of walking navigation in VR still poses a technological challenge for current motion tracking systems. Different metaphors simulate locomotion without involving real gait kinematics, which can affect presence, orientation, spatial memory and cognition, and even performance. All these factors can dissuade their use in rehabilitation. We hypothesize that a marker-based head tracking solution would allow walking in VR with high sense of presence and without causing sickness. The objectives of this study were to determine the accuracy, the jitter, and the lag of the tracking system and its elicited sickness and presence in comparison of a CAVE system. Methods: The accuracy and the jitter around the working area at three different heights and the lag of the head tracking system were analyzed. In addition, 47 healthy subjects completed a search task that involved navigation in the walking VR system and in the CAVE system. Navigation was enabled by natural locomotion in the walking VR system and through a specific device in the CAVE system. An HMD was used as display in the walking VR system. After interacting with each system, subjects rated their sickness in a seven-point scale and their presence in the Slater-Usoh-Steed Questionnaire and a modified version of the Presence Questionnaire. Results: Better performance was registered at higher heights, where accuracy was less than 0.6 cm and the jitter was about 6 mm. The lag of the system was 120 ms. Participants reported that both systems caused similar low levels of sickness (about 2.4 over 7). However, ratings showed that the walking VR system elicited higher sense of presence than the CAVE system in both the Slater-Usoh-Steed Questionnaire (17.6 +/- 0.3 vs 14.6 +/- 0.6 over 21, respectively) and the modified Presence Questionnaire (107.4 +/- 2.0 vs 93.5 +/- 3.2 over 147, respectively). Conclusions: The marker-based solution provided accurate, robust, and fast head tracking to allow navigation in the VR system by walking without causing relevant sickness and promoting higher sense of presence than CAVE systems, thus enabling natural walking in full-scale environments, which can enhance the ecological validity of VR-based rehabilitation applications.The authors wish to thank the staff of LabHuman for their support in this project, especially José Miguel Martínez and José Roda for their assistance. This study was funded in part by Ministerio de Economia y Competitividad of Spain (Project NeuroVR, TIN2013-44741-R and Project REACT, TIN2014-61975-EXP), by Ministerio de Educacion y Ciencia of Spain (Project Consolider-C, SEJ2006-14301/PSIC), and by Universitat Politecnica de Valencia (Grant PAID-10-14).Borrego, A.; Latorre Grau, J.; Llorens Rodríguez, R.; Alcañiz Raya, ML.; Noé, E. (2016). Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters. Journal of NeuroEngineering and Rehabilitation. 13:1-9. https://doi.org/10.1186/s12984-016-0174-1S1913Lee KM. Presence. Explicated Communication Theory. 2004;14(1):27–50.Riva G. Is presence a technology issue? Some insights from cognitive sciences. Virtual Reality. 2009;13(3):159–69.Banos RM, et al. Immersion and emotion: their impact on the sense of presence. Cyberpsychol Behav. 2004;7(6):734–41.Llorens R, et al. Tracking systems for virtual rehabilitation: objective performance vs. subjective experience. A practical scenario. Sensors (Basel). 2015;15(3):6586–606.Navarro MD, et al. Validation of a low-cost virtual reality system for training street-crossing. A comparative study in healthy, neglected and non-neglected stroke individuals. Neuropsychol Rehabil. 2013;23(4):597–618.Parsons TD. Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Front Hum Neurosci. 2015;9:660.Cameirao MS, et al. Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: methodology, design, psychometrics, usability and validation. J Neuroeng Rehabil. 2010;7:48.Llorens R, et al. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clin Rehabil. 2015;29(3):261–8.Llorens R, et al. Videogame-based group therapy to improve self-awareness and social skills after traumatic brain injury. J Neuroeng Rehabil. 2015;12:37.Fong KN, et al. Usability of a virtual reality environment simulating an automated teller machine for assessing and training persons with acquired brain injury. J Neuroeng Rehabil. 2010;7:19.Levin MF, Weiss PL, Keshner EA. Emergence of virtual reality as a tool for upper limb rehabilitation: incorporation of motor control and motor learning principles. Phys Ther. 2015;95(3):415–25.Llorens R, et al. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418–25. e2.Cruz-Neira C, et al. Scientists in wonderland: A report on visualization applications in the CAVE virtual reality environment. In: 1993. Proceedings IEEE 1993 Symposium on Research Frontiers in Virtual Reality. 1993.Juan MC, Perez D. Comparison of the levels of presence and anxiety in an acrophobic environment viewed via HMD or CAVE. Presence. 2009;18(3):232–48.Yang YR, et al. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture. 2008;28(2):201–6.Cho KH, Lee WH. Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study. Am J Phys Med Rehabil. 2013;92(5):371–84.Darter BJ, Wilken JM. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation. Phys Ther. 2011;91(9):1385–94.Yang S, et al. Improving balance skills in patients who had stroke through virtual reality treadmill training. Am J Phys Med Rehabil. 2011;90(12):969–78.Walker ML, et al. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. Arch Phys Med Rehabil. 2010;91(1):115–22.Riley PO, et al. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture. 2007;26(1):17–24.Alton F, et al. A kinematic comparison of overground and treadmill walking. Clin Biomech. 1998;13(6):434–40.Lee SJ, Hidler J. Biomechanics of overground vs. treadmill walking in healthy individuals. J Appl Physiol. 2008;104(3).Slater M. Measuring presence: a response to the witmer and Singer presence questionnaire. Presence. 1999;8(5):560–5.Viau A, et al. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil. 2004;1(1):11.Parsons TD, et al. The potential of function-led virtual environments for ecologically valid measures of executive function in experimental and clinical neuropsychology. Neuropsychol Rehabil. 2015;11:1–31. doi: 10.1080/09602011.2015.1109524 .Aravind G, Lamontagne A. Perceptual and locomotor factors affect obstacle avoidance in persons with visuospatial neglect. J Neuroeng Rehabil. 2014;11:38.Darekar A, Lamontagne A, Fung J. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment. Hum Mov Sci. 2015;40:359–71.Whittle MW. Chapter 4 - Methods of gait analysis. In: Whittle MW, editor. Gait analysis. Edinburgh: Butterworth-Heinemann; 2007. p. 137–75.Hodgson E, et al. WeaVR: a self-contained and wearable immersive virtual environment simulation system. Behav Res Methods. 2015;47(1):296–307.Akizuki H, et al. Effects of immersion in virtual reality on postural control. Neurosci Lett. 2005;379(1):23–6.Thies SB, et al. Comparison of linear accelerations from three measurement systems during "reach & grasp". Med Eng Phys. 2007;29(9):967–72.Fiala M. Designing highly reliable fiducial markers. IEEE Trans Pattern Anal Mach Intell. 2010;32(7):1317–24.Garrido-Jurado S, et al. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition. 2014;47(6):2280–92.Kim K, et al. Effects of virtual environment platforms on emotional responses. Comput Methods Programs Biomed. 2014;113(3):882–93.Slater M, Steed A. A virtual presence counter. Presence. 2000;9(5):413–34.Witmer BG, Singer MJ. Measuring presence in virtual environments: a presence questionnaire. Presence Teleop Virt. 1998;7(3):225–40.Martín-Gutiérrez J, et al. Design and validation of an augmented book for spatial abilities development in engineering students. Comput Graph. 2010;34(1):77–91.Lopez-Mir F, et al. Design and validation of an augmented reality system for laparoscopic surgery in a real environment. Biomed Res Int. 2013;2013:758491.Abawi DF, Bienwald J, Dorner R. Accuracy in optical tracking with fiducial markers: an accuracy function for ARToolKit. In: Third IEEE and ACM International symposium on mixed and augmented reality, ISMAR 2004. 2004.Malbezin P, Piekarski W, Thomas BH. Measuring ARTootKit accuracy in long distance tracking experiments. In: The first IEEE International workshop augmented reality toolkit. 2002.Paquette C, Paquet N, Fung J. Aging affects coordination of rapid head motions with trunk and pelvis movements during standing and walking. Gait Posture. 2006;24(1):62–9.Graham JE, et al. Walking speed threshold for classifying walking independence in hospitalized older adults. Phys Ther. 2010;90(11):1591–7.Gorea A. A refresher of the original Bloch’s Law paper (bloch, july 1885). i-Perception. 2015;6:4.Moss JD, Muth ER. Characteristics of head-mounted displays and their effects on Simulator sickness. Hum Factors. 2011;53(3):308–19.Draper MH, et al. Effects of image scale and system time delay on Simulator sickness within head-coupled virtual environments. Hum Factors. 2001;43(1):129–46.Fujisaki W. Effects of delayed visual feedback on grooved pegboard test performance. Front Psychol. 2012;3:61.Keshner EA, et al. Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1379–82.Slaboda JC, Keshner EA. Reorientation to vertical modulated by combined support surface tilt and virtual visual flow in healthy elders and adults with stroke. J Neurol. 2012;259(12):2664–72.Tossavainen T. Comparison of CAVE and HMD for visual stimulation in postural control research. Stud Health Technol Inform. 2004;98:385–7.Akiduki H, et al. Visual-vestibular conflict induced by virtual reality in humans. Neurosci Lett. 2003;340(3):197–200.Duh HBL, et al. Effects of field of view on balance in an immersive environment. In: Virtual Reality, 2001. Proceedings. IEEE. 2001.Krijn M, et al. Treatment of acrophobia in virtual reality: the role of immersion and presence. Behav Res Ther. 2004;42(2):229–39.Mania K, Chalmers A. The effects of levels of immersion on memory and presence in virtual environments: a reality centered approach. Cyberpsychol Behav. 2001;4(2):247–64.Gorini A, et al. The role of immersion and narrative in mediated presence: the virtual hospital experience. Cyberpsychol Behav Soc Netw. 2011;14(3):99–105.Fromberger P, et al. Virtual viewing time: the relationship between presence and sexual interest in androphilic and gynephilic Men. PLoS One. 2015;10(5), e0127156.Slater M, et al. Visual realism enhances realistic response in an immersive virtual environment. IEEE Comput Graph Appl. 2009;29(3):76–84.Nir-Hadad SY, et al. A virtual shopping task for the assessment of executive functions: Validity for people with stroke. Neuropsychol Rehabil. 2015;11:1–26. doi: 10.1080/09602011.2015.1109523 .Vasilyeva M, Lourenco SF. Development of spatial cognition. Wiley Interdiscip Rev Cogn Sci. 2012;3(3):349–62.Banakou D, Groten R, Slater M. Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes. Proc Natl Acad Sci U S A. 2013;110(31):12846–51.Yee N, Bailenson JN, Ducheneaut N. The proteus effect: implications of transformed digital self-representation on online and offline behavior. Commun Res. 2009;36(2):285–312.Baylor AL. Promoting motivation with virtual agents and avatars: role of visual presence and appearance. Philos Trans R Soc Lond B Biol Sci. 2009;364(1535):3559–65.Clemente M, et al. Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Sys App. 2014;41(4, Part 2):1584–92.Clemente M, et al. An fMRI study to analyze neural correlates of presence during virtual reality experiences. 2013. Interacting with Computers

    Heterogeneous Catalysis by Polyoxometalates in Metal–Organic Frameworks

    No full text
    corecore