17 research outputs found

    Quality assurance of surface wind observations from automated weather stations

    Get PDF
    Meteorological data of good quality arc important for understanding both global and regional climates In this respect, great efforts have been made to evaluate temperature- and precipitation-related records This study summarizes the evaluations made to date of the quality of wind speed and direction records acquired at 41 automated weather stations in the northeast of the Iberian Peninsula Observations were acquired from 1992 to 2005 at a temporal resolution of 10 and 30 min A quality assurance system was imposed to select) the records for 1) manipulation errors associated with storage and management of the data. 2) consistency limits to to ensure that observations ale within their natural limits of variation, and 3) temporal consistency to assess abnormally low/high variations in the individual time series In addition. the most important biases of the dataset are analyzed and corrected wherever possible A total of 1 8% wind speed and 3 7% wind direction records was assumed invalid. pointing to specific problems in wind measurement The study not only tiles to contribute to the science with the creation of a wind damsel of unmoved quality. but it also reports on potential errors that could be plc:sent in other wind dataset

    A revised scheme for the WRF surface layer formulation

    Get PDF
    This study summarizes the revision performed on the surface layer formulation of the Weather Research and Forecasting (WRF) model. A first set of modifications are introduced to provide more suitable similarity functions to simulate the surface layer evolution under strong stable/unstable conditions. A second set of changes are incorporated to reduce or suppress the limits that are imposed on certain variables in order to avoid undesired effects (e. g., a lower limit in u_*). The changes introduced lead to a more consistent surface layer formulation that covers the full range of atmospheric stabilities. The turbulent fluxes are more (less) efficient during the day (night) in the revised scheme and produce a sharper afternoon transition that shows the largest impacts in the planetary boundary layer meteorological variables. The most important impacts in the near-surface diagnostic variables are analyzed and compared with observations from a mesoscale network

    Warming patterns in regional climate change projections over the Iberian Peninsula

    Get PDF
    A set of four regional climate change projections over the Iberian Peninsula has been performed. Simulations were driven by two General Circulation Models (consisting of two versions of the same atmospheric model coupled to two different ocean models) under two different SRES scenario. The XXI century has been simulated following a full-transient approach with a climate version of the mesoscale model MM5. An Empirical Orthogonal Function analysis (EOF) is applied to the monthly mean series of daily maximum and minimum 2-metre temperature to extract the warming signal. The first EOF is able to capture the spatial structure of the warming. The obtained warming patterns are fairly dependent on the month, but hardly change with the tested scenarios and GCM versions. Their shapes are related to geographical parameters, such as distance to the sea and orography. The main differences among simulations mostly concern the temporal evolution of the warming. The temperature trend is stronger for maximum temperatures and depends on the scenario and the driving GCM. This asymmetry, as well as the different warming rates in summer and winter, leads to a continentalization of the climate over the IP

    Attributing trends in extremely hot days to changes in atmospheric dynamics

    Get PDF
    This paper presents a method for attributing regional trends in the frequency of extremely hot days (EHDs) to changes in the frequency of the atmospheric patterns that characterize such extraordinary events. The study is applied to mainland Spain and the Balearic Islands for the extended summers of the period 1958–2008, where significant and positive trends in maximum temperature (Tx) have been reported during the second half of the past century. First, the study area was split into eight regions attending to their different temporal variability of the daily Tx series obtained from the Spain02 gridded data set using a clustering procedure. Second, the large-scale atmospheric situations causing EHDs are defined by circulation types (CTs). The obtainment of the CTs differs from the majority of CT classifications proposed in the literature. It is based on regional series and on a previous characterization of the main atmospheric situations obtained using only some days classified as extremes in the different regions. Three different atmospheric fields (SLP, T850, and Z500) from ECMWF reanalysis and analysis data and combinations of them (SLP–T850, SLP–Z500, and T850–Z500) are used to produce six different CT classifications. Subsequently, links between EHD occurrence in the different regions and CT for all days have been established. Finally, a simple model to relate the trends in EHDsfor each region to the changes in the CT frequency appearance has been formulated. Most regions present positive and significant trends in the occurrence of EHDs. The CT classifications using two variables perform better. In particular, SLP–T850 is the best for characterizing the atmospheric situations leading to EHD occurrences for most of the regions. Only a small number of CTs have significant trends in their frequency and are associated with high efficiency causing EHD occurrences in most regions simultaneously, especially in the northern and central regions. Attribution results show that changes in circulation can only explain some part of the regional EHD trends. The percentage of the trend attributable to changes in atmospheric dynamics varies from 15 to 50 %, depends on the region and is sensitive to the selected large-scale variables

    Is there a common pattern of future gas-phase air pollution in Europe under diverse climate change scenarios?

    No full text
    Climate change alone influences future levels of tropospheric ozone and their precursors through modifications of gas-phase chemistry, transport, removal, and natural emissions. The goal of this study is to determine at what extent the modes of variability of gas-phase pollutants respond to different climate change scenarios over Europe. The methodology includes the use of the regional modeling system MM5 (regional climate model version)-CHIMERE for a target domain covering Europe. Two full-transient simulations covering from 1991–2050 under the SRES A2 and B2 scenarios driven by ECHO-G global circulation model have been compared. The results indicate that the spatial patterns of variability for tropospheric ozone are similar for both scenarios, but the magnitude of the change signal significantly differs for A2 and B2. The 1991–2050 simulations share common characteristics for their chemical behavior. As observed from the NO2 and α-pinene modes of variability, our simulations suggest that the enhanced ozone chemical activity is driven by a number of parameters, such as the warming-induced increase in biogenic emissions and, to a lesser extent, by the variation in nitrogen dioxide levels. For gas-phase pollutants, the general increasing trend for ozone found under A2 and B2 forcing is due to a multiplicity of climate factors, such as increased temperature, decreased wet removal associated with an overall decrease of precipitation in southern Europe, increased photolysis of primary and secondary pollutants as a consequence of lower cloudiness and increased biogenic emissions fueled by higher temperatures
    corecore