445 research outputs found

    Unique growth pattern of human mammary epithelial cells induced by polymeric nanoparticles.

    Get PDF
    Due to their unique properties, engineered nanoparticles (NPs) have found broad use in industry, technology, and medicine, including as a vehicle for drug delivery. However, the understanding of NPs' interaction with different types of mammalian cells lags significantly behind their increasing adoption in drug delivery. In this study, we show unique responses of human epithelial breast cells when exposed to polymeric Eudragit® RS NPs (ENPs) for 1-3 days. Cells displayed dose-dependent increases in metabolic activity and growth, but lower proliferation rates, than control cells, as evidenced in tetrazolium salt (WST-1) and 5-bromo-2'-deoxyuridine (BrdU) assays, respectively. Those effects did not affect cell death or mitochondrial fragmentation. We attribute the increase in metabolic activity and growth of cells culture with ENPs to three factors: (1) high affinity of proteins present in the serum for ENPs, (2) adhesion of ENPs to cells, and (3) activation of proliferation and growth pathways. The proteins and genes responsible for stimulating cell adhesion and growth were identified by mass spectrometry and Microarray analyses. We demonstrate a novel property of ENPs, which act to increase cell metabolic activity and growth and organize epithelial cells in the epithelium as determined by Microarray analysis

    Développement et caractérisation de procédés de gravure plasma de T.S.V (Through Silicon Via) pour l'intégration tridimensionnelle de circuits intégrés

    Get PDF
    Les dictats de la course à la miniaturisation et à l'accroissement des performances suivit par les industriels de la microélectronique, se heurte aujourd'hui aux limites physiques, technologiques et économiques. Une alternative innovante pour dépasser ces inconvénients, réside en l'intégration tridimensionnelle de circuits intégrés. Cette technologie consiste à empiler verticalement différents niveaux de circuits aux fonctionnalités diverses. Elle ouvre la voie à des systèmes multifonctions ou hétérogènes, aux performances électriques bien meilleures que les circuits bidimensionnels existants. L'empilement de ces puces est réalisable par l'intermédiaire de vias traversant nommés Though Silicon Via ( TSV ), qui sont obtenus par la succession de différentes étapes technologiques, dont une d'entre elles consiste à réaliser par gravure plasma, des microcavités profondes à travers le silicium. Actuellement deux procédés de gravure plasma sont principalement utilisés pour la conception de TSV , le procédé Bosch et le procédé cryogénique, avec dans les deux cas des avantages et des inconvénients différents. L'objet de cette thèse s'inscrit dans le développement d'un procédé de gravure plasma innovant et alternatif à ceux actuellement utilisés, afin de limiter leurs inconvénients (rugosité de flancs, manque de contrôle des profils, basse température ). Dans cette logique deux procédés de gravure profonde ont été envisagés, exploitant les chimies de gravure SF6/O2/HBr et SF6/O2/HBr/SiF4. L'ensemble de l'étude vise à une meilleure compréhension des mécanismes de gravure et de passivation des cavités à fort facteur de forme grâce en particulier à l'exploitation des techniques d'analyse de surface par XPS.The dictates of miniaturization and increased performance followed by microelectronics manufacturers faces currently physical, technological and economic limitations. An innovative alternative to these problems is the three-dimensional integration of integrated circuits. This technology involves the vertical stacking of different levels of functionality on the various circuits, and thus opens the way for multifunctional or heterogeneous systems, with electrical performance that are much better than those existing in the two-dimensional circuits. The stacking of these chips is achievable through crossing vias named TSV for "Through Silicon Via", which are obtained by the succession of different technological steps,. One of these steps is the realization by plasma etching of deep silicon microcavities. Currently two plasma etch processes are mainly used for the design of TSV or other silicon structures, the Bosch Process and the Cryogenic process, in both cases with different advantages and disadvantages. The purpose of this thesis is to develop an innovative and alternative plasma etching method comparing to those currently used, to minimize their disadvantages (sidewall roughness, lack of profiles control, low temperature ...). In this logic two deep etch processes have been considered, exploiting SF6/O2/HBr and SF6/O2/HBr/SiF4 etching chemistries. All the studies focuses at better understanding of the mechanisms of etching and passivation of high aspect ratio cavities, especially through exploitation of XPS surface analysisSAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Crystal structure, Hirshfeld surface analysis and DFT studies of 5-(adamantan-1-yl)-3-[(4- chlorobenzyl)sulfanyl]-4-methyl4H-1,2,4-triazole, a potential 11βHSD1 inhibitor

    Get PDF
    5-(Adamantan-1-yl)-3-[(4-chlorobenzyl)sulfanyl]-4-methyl-4H-1,2,4-triazole (4) was identifed as a potential 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor and this paper describes the in-depth structural analysis thereof. Compound 4 was synthesized in a 92% yield and its 3D-structure confrmed by single-crystal X-ray difraction. Hirshfeld surface analysis indicated that H…H, C-H…C, C-H…Cl and especially C-H…N hydrogen bond interactions are the primary contributors to the intermolecular stabilisation in the crystal. In order to explore the properties of 4, free from the infuence of the crystal feld, density functional theory (DFT) calculations were conducted. Results indicated that the DFT optimized geometry of 4 produced a conformer (4a) that is signifcantly diferent from the crystal structure. Further experiments confrmed that the crystal structure is not the absolute minimum conformation. This indicated that the crystal packing forces has signifcantly infuenced the conformation thereof. Frontier molecular orbital energies and net atomic charges were also calculated to elucidate the electronic properties of 4a. These results provided insight into areas of the molecule that may present with the ability to form binding interactions at the 11β-HSD1 active site. Molecular docking experiments revealed important intermolecular interactions between 4a and 11β-HSD1. These results indicate that 4 may be considered for further drug design endeavors

    Integration of innovative oxide materials in an IT-SOFC

    Get PDF
    Cette thèse vise à évaluer le potentiel d'un nouveau couple cathode / électrolyte pour une application en IT-SOFC (700C), par le biais de l élaboration et du test de cellules à anode support de configuration planaire. Les matériaux concernés sont l'électrolyte BaIn0.3Ti0.7O2.85 (BIT07), de structure perovskite, et les nickelates de terres rares Ln2-xNiO4+ (LnN, Ln = La, Nd, Pr) en tant que cathodes ; ces matériaux ont montré des propriétés prometteuses dans des travaux préliminaires effectués à l'IMN et l'ICMCB. La première partie de cette thèse porte sur la mise en place d'un protocole d'élaboration de cellules complètes utilisant des techniques bas coûts et industrialisables (cellules de taille 3 x 3 cm2) : l anode Ni / BIT07 a été élaborée par coulage en bande, l'électrolyte BIT07 par vacuum slip casting et les cathodes par sérigraphie. Les mesures électrochimiques réalisées sur une première génération de cellules ont mis en évidence la nécessité d'ajouter une couche barrière de GDC entre les cathodes LnN et l'électrolyte BIT07. Les meilleures performances ont été obtenues pour une cellule BIT07 / Ni | BIT07 | GDC | PrN, avec une densité de puissance à 700C et 0.7 V de 176 mW cm-2 pour une faible résistance de polarisation de 0. 29 cm2. La principale limitation des performances a été identifiée comme étant la résistance interne du banc de test, donnant lieu à des valeurs de résistances séries anormalement élevées. Cette cellule a été opérée avec succès durant plus de 500 heures sous courant, avec néanmoins une vitesse de dégradation extrapolée élevée de l ordre de 27% / kh.This thesis aimed at assessing the potential of a novel cathode / electrolyte couple for IT-SOFC applications (700C), through the elaboration and testing of planar anode-supported cells. The materials involved were the perovskite-structured BaIn0.3Ti0.7O2.85 (BIT07) electrolyte and the rare earth nickelate Ln2-xNiO4+ (LnN, Ln = La, Nd, Pr) cathodes, both materials having shown promising properties in preliminary work done at the IMN and the ICMCB. The first part of this thesis concerned the implementation of a cell elaboration protocol using low-cost and scalable shaping techniques (cell size 3 x 3 cm2); namely, the Ni / BIT07 anodes were elaborated by tape casting, the BIT07 electrolyte by vacuum slip casting and the cathodes by screen printing. Comparison of electrochemical results for a first and second generation of cells highlighted the usefulness of adding a GDC buffer layer in between the LnN cathodes and the BIT07 electrolyte. The best performance has been obtained for a cell BIT07 / Ni | BIT07 | GDC | PrN, with a power density at 700C and 0.7 V of 176 mW cm-2 for a competitive polarisation resistance of 0.29 cm2. The main limitation of the performance has been determined to be related to the internal resistance of the test setup, giving anomalously high series resistances. This cell has been successfully operated beyond 500 hours under current, although with a fairly high extrapolated degradation rate of 27% / kh.BORDEAUX1-Bib.electronique (335229901) / SudocSudocFranceF

    Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins via the Activation of the MnK/eIF4E Pathway

    Get PDF
    International audienceChikungunya virus (CHIKV), the causative agent of a major epidemic spanning five continents, is a positive stranded mRNA virus that replicates using the cell's cap-dependent translation machinery. Despite viral infection inhibiting mTOR, a metabolic sensor controls cap-dependent translation, viral proteins are efficiently translated. Rapalog treatment, silencing of mtor or raptor genes, but not rictor, further enhanced CHIKV infection in culture cells. Using biochemical assays and real time imaging, we demonstrate that this effect is independent of autophagy or type I interferon production. Providing in vivo evidence for the relevance of our findings, mice treated with mTORC1 inhibitors exhibited increased lethality and showed a higher sensitivity to CHIKV. A systematic evaluation of the viral life cycle indicated that inhibition of mTORC1 has a specific positive effect on viral proteins, enhancing viral replication by increasing the translation of both structural and nonstructural proteins. Molecular analysis defined a role for phosphatidylinositol-3 kinase (PI3K) and MAP kinase-activated protein kinase (MnKs) activation, leading to the hyper-phosphorylation of eIF4E. Finally, we demonstrated that in the context of CHIKV inhibition of mTORC1, viral replication is prioritized over host translation via a similar mechanism. Our study reveals an unexpected bypass pathway by which CHIKV protein translation overcomes viral induced mTORC1 inhibition

    The Time-Course of Visual Categorizations: You Spot the Animal Faster than the Bird

    Get PDF
    Background: Since the pioneering study by Rosch and colleagues in the 70s, it is commonly agreed that basic level perceptual categories (dog, chair…) are accessed faster than superordinate ones (animal, furniture…). Nevertheless, the speed at which objects presented in natural images can be processed in a rapid go/no-go visual superordinate categorization task has challenged this ‘‘basic level advantage’’. Principal Findings: Using the same task, we compared human processing speed when categorizing natural scenes as containing either an animal (superordinate level), or a specific animal (bird or dog, basic level). Human subjects require an additional 40–65 ms to decide whether an animal is a bird or a dog and most errors are induced by non-target animals. Indeed, processing time is tightly linked with the type of non-targets objects. Without any exemplar of the sam

    Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?

    Get PDF
    The organization and mining of malaria genomic and post-genomic data is highly motivated by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should therefore be as reliable and versatile as possible. In this context, we examined five aspects of the organization and mining of malaria genomic and post-genomic data: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Progresses toward a grid-enabled chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa

    A microfluidic biochip for the nanoporation of living cells

    No full text
    International audienceThis paper deals with the development of a microfluidic biochip for the exposure of living cells to nanosecond pulsed electric fields (nsPEF). When exposed to ultra short electric pulses (typical duration of 3-10ns), disturbances on the plasma membrane and on the intra cellular components occur, modifying the behavioral response of cells exposed to drugs or transgene vectors. This phenomenon permits to envision promising therapies. The presented biochip is composed of thick gold electrodes that are designed to deliver a maximum of energy to the biological medium containing cells. The temporal and spectral distributions of the nsPEF are considered for the design of the chip. In order to validate the fabricated biochip ability to orient the pulse towards the cells flowing within the exposition channels, a frequency analysis is provided. High voltage measurements in the time domain are performed to characterize the amplitude and the shape of the nsPEF within the exposition channels and compared to numerical simulations achieved with a 3D Finite-Difference Time-Domain code. We demonstrate that the biochip is adapted for 3 ns and 10 ns pulses and that the nsPEF are homogenously applied to the biological cells regardless their position along the microfluidic channel. Furthermore, biological tests performed on the developed microfluidic biochip permit to prove its capability to permeabilize living cells with nanopulses. To the best of our knowledge, we report here the first successful use of a microfluidic device optimized for the achievement and real time observation of the nanoporation of living cells

    Early-onset and late-onset Alzheimer’s disease are associated with distinct patterns of memory impairment

    Get PDF
    The goal of this study was to investigate the specific patterns of memory breakdown in patients suffering from early-onset Alzheimer’s disease (EOAD) and late-onset Alzheimer’s disease (LOAD). Twenty EOAD patients, twenty LOAD patients, twenty matched younger controls, and twenty matched older controls participated in this study. All participants underwent a detailed neuropsychological assessment, an MRI scan, an FDG-PET scan, and AD patients had biomarkers as supporting evidence of both amyloïdopathy and neuronal injury. Results of the neuropsychological assessment showed that both EOAD and LOAD groups were impaired in the domains of memory, executive functions, language, praxis, and visuoconstructional abilities, when compared to their respective control groups. EOAD and LOAD groups, however, showed distinct patterns of memory impairment. Even though both groups were similarly affected on measures of episodic, short term and working memory, in contrast semantic memory was significantly more impaired in LOAD than in EOAD patients. The EOAD group was not more affected than the LOAD group in any memory domain. EOAD patients, however, showed significantly poorer performance in other cognitive domains including executive functions and visuoconstructional abilities. A more detailed analysis of the pattern of semantic memory performance among patient groups revealed that the LOAD was more profoundly impaired, in tasks of both spontaneous recall and semantic recognition. Voxel-Based Morphometry (VBM) analyses showed that impaired semantic performance in patients was associated with reduced gray matter volume in the anterior temporal lobe region, while PET-FDG analyses revealed that poorer semantic performance was associated with greater hypometabolism in the left temporoparietal region, both areas reflecting key regions of the semantic network. Results of this study indicate that EOAD and LOAD patients present with distinct patterns of memory impairment, and that a genuine semantic impairment may represent one of the clinical hallmarks of LOAD

    Combining the Estimated Date of HIV Infection with a Phylogenetic Cluster Study to Better Understand HIV Spread: Application in a Paris Neighbourhood

    Get PDF
    International audienceObjectivesTo relate socio-demographic and virological information to phylogenetic clustering in HIV infected patients in a limited geographical area and to evaluate the role of recently infected individuals in the spread of HIV.MethodsHIV-1 pol sequences from newly diagnosed and treatment-naive patients receiving follow-up between 2008 and 2011 by physicians belonging to a health network in Paris were used to build a phylogenetic tree using neighbour-joining analysis. Time since infection was estimated by immunoassay to define recently infected patients (very early infected presenters, VEP). Data on socio-demographic, clinical and biological features in clustered and non-clustered patients were compared. Chains of infection structure was also analysed.Results547 patients were included, 49 chains of infection containing 108 (20%) patients were identified by phylogenetic analysis. analysis. Eighty individuals formed pairs and 28 individuals were belonging to larger clusters. The median time between two successive HIV diagnoses in the same chain of infection was 248 days [CI = 176–320]. 34.7% of individuals were considered as VEP, and 27% of them were included in chains of infection. Multivariable analysis showed that belonging to a cluster was more frequent in VEP and those under 30 years old (OR: 3.65, 95 CI 1.49–8.95, p = 0.005 and OR: 2.42, 95% CI 1.05–5.85, p = 0.04 respectively). The prevalence of drug resistance was not associated with belonging to a pair or a cluster. Within chains, VEP were not grouped together more than chance predicted (p = 0.97).ConclusionsMost newly diagnosed patients did not belong to a chain of infection, confirming the importance of undiagnosed or untreated HIV infected individuals in transmission. Furthermore, clusters involving both recently infected individuals and longstanding infected individuals support a substantial role in transmission of the latter before diagnosis
    corecore