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Summary 
 

This thesis aimed at assessing the potential of a novel cathode / electrolyte couple for IT-SOFC 

applications (700°C), through the elaboration and testing of planar anode-supported cells. The 

materials involved were the perovskite-structured BaIn0.3Ti0.7O2.85 (BIT07) electrolyte and the 

rare earth nickelate Ln2-xNiO4+  (LnN, Ln = La, Nd, Pr) cathodes, both materials having shown 

promising properties in preliminary work done at the IMN and the ICMCB. The first part of 

this thesis concerned the implementation of a cell elaboration protocol using low-cost and 

scalable shaping techniques (cell size 3 x 3 cm
2
); namely, the Ni / BIT07 anodes were 

elaborated by tape casting, the BIT07 electrolyte by vacuum slip casting and the cathodes by 

screen printing. Comparison of electrochemical results for a first and second generation of cells 

highlighted the usefulness of adding a GDC buffer layer in between the LnN cathodes and the 

BIT07 electrolyte. The best performance has been obtained for a cell BIT07 / Ni | BIT07 | 

GDC | PrN, with a power density at 700°C and 0.7 V of 176 mW cm
-2

 for a competitive 

polarisation resistance of 0.29 Ω cm
2
. The main limitation of the performance has been 

determined to be related to the internal resistance of the test setup, giving anomalously high 

series resistances. This cell has been successfully operated beyond 500 hours under current, 

although with a fairly high extrapolated degradation rate of 27% / kh.  

Key words: IT-SOFC, BIT07, Ln2NiO4+ , tape casting, vacuum slip casting, screen printing, 

cell testing, electrochemical impedance spectroscopy. 

 

 

 

Résumé  

Cette thèse vise à évaluer le potentiel d'un nouveau couple cathode / électrolyte pour une 

application en IT-SOFC (700°C), par le biais de l’élaboration et du test de cellules à anode 

support de configuration planaire. Les matériaux concernés sont l'électrolyte BaIn0.3Ti0.7O2.85 

(BIT07), de structure perovskite, et les nickelates de terres rares Ln2-xNiO4+  (LnN, Ln = La, 

Nd, Pr) en tant que cathodes ; ces matériaux ont montré des propriétés prometteuses dans des 

travaux préliminaires effectués à l'IMN et l'ICMCB. La première partie de cette thèse porte sur 

la mise en place d'un protocole d'élaboration de cellules complètes utilisant des techniques bas 

coûts et industrialisables (cellules de taille 3 x 3 cm
2
) : l’anode Ni / BIT07 a été élaborée par 

coulage en bande, l'électrolyte BIT07 par vacuum slip casting et les cathodes par sérigraphie. 

Les mesures électrochimiques réalisées sur une première génération de cellules ont mis en 

évidence la nécessité  d'ajouter une couche barrière de GDC entre les cathodes LnN et 

l'électrolyte BIT07. Les meilleures performances ont été obtenues pour une cellule BIT07 / Ni | 

BIT07 | GDC | PrN, avec une densité de puissance à 700°C et 0.7 V de 176 mW cm
-2

 pour une 

faible résistance de polarisation de 0. 29 Ω cm
2
. La principale limitation des performances a été 

identifiée comme étant la résistance interne du banc de test, donnant lieu à des valeurs de 

résistances séries anormalement élevées. Cette cellule a été opérée avec succès durant plus de 

500 heures sous courant, avec néanmoins une vitesse de dégradation extrapolée élevée de 

l’ordre de 27% / kh. 

Mots clés : IT-SOFC, BIT07, Ln2-xNiO4+ , coulage en bande, vacuum slip-casting, sérigraphie, 

test de cellules, spectroscopie d’impédance complexe. 
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Intégration de matériaux oxydes innovants dans 

une IT-SOFC 

 

Les principaux obstacles au déploiement industriel de la technologie SOFC (Solid 

Oxide Fuel Cell) restent à ce jour des problèmes de fiabilité insuffisante, de longévité et de 

coûts. Bien qu’une diminution des températures de fonctionnement des SOFCs soit considéré 

comme une approche pertinente pour lever certains verrous liés aux hautes températures 

(technologie IT-SOFC pour Intermediate-Temperature SOFC), les performances des piles à 

combustible à base de matériaux céramiques classiques (zircone stabilisée à l’yttrium (YSZ) 

comme électrolyte, son cermet correspondant Ni / YSZ comme anode et La1-xSrxMnO3 (LSM) 

comme cathode) sont fortement réduites aux températures intermédiaires. Ainsi, cette dernière 

décennie a vu l'émergence de matériaux alternatifs, principalement d’électrodes, plus 

performants dans la gamme de températures intermédiaires. 

En ce qui concerne la cathode, les matériaux à conduction mixte ions / électrons ont 

montré des performances accrues par rapport au matériau standard LSM. À cet égard, une 

cellule IT-SOFC typique implique l'association de l'électrolyte YSZ avec une cathode de type 

La1-xSrxCo1-yFeyO3-  (LSCF). Cependant, les contraintes thermomécaniques dues à une 

importante différence de coefficients de dilatation thermique entre les deux matériaux 

pourraient conduire à des problèmes tels que l’apparition de fissures ou la délamination de 

l’électrode lors de l'élaboration de cellules ou lors de cyclages thermiques. De plus, une 

réactivité chimique se produit entre YSZ et LSCF, conduisant à la formation d'une couche 

isolante de SrZrO3 à l'interface électrolyte / électrode. Une couche barrière, généralement en 

GDC (cérine dopée au gadolinium), est donc souvent nécessaire entre les deux phases, ce qui 

augmente la complexité de l'élaboration des cellules. 

En raison de ses bonnes propriétés intrinsèques telles qu’une conductivité ionique 

élevée (autour de 10
-2

 S cm
-1

 à 700°C) et une bonne stabilité chimique sur une large gamme de 

pressions partielles d'oxygène et sous CO2, la phase BaIn0.3Ti0.7O2.85 (BIT07) constitue une 

alternative potentielle à YSZ comme matériau d’électrolyte pour IT-SOFC. En outre, par 

comparaison avec YSZ qui est de structure fluorine, sa structure perovskite cubique peut offrir 

une meilleure compatibilité avec les matériaux de cathode usuels, également de structure 

perovskite (ou dérivée). Par exemple, une réactivité chimique bénéfique se produit entre BIT07 

et LSCF, conduisant à la formation d'une solution solide conductrice. 



Integration of innovative oxide materials in an IT-SOFC 
 

II 

Des matériaux de cathode qui pourraient être associés à BIT07 sont les nickelates de 

terres rares Ln2-xNiO4+  (Ln = La, Nd, Pr), notés LnN, présentant une structure cristalline 

dérivée de la structure perovskite et des coefficients de dilatation thermique proches de celui de 

BIT07. Par ailleurs, cette famille de matériaux a montré ses qualités en tant que matériaux 

conducteurs mixtes, avec des coefficients de diffusion de l’oxygène plus élevés que pour 

LSCF. 

L'objectif de ce travail a été d'associer ces deux matériaux oxydes innovants dans une 

SOFC à anode support de configuration planaire pour un fonctionnement dans la gamme de 

température intermédiaire, impliquant des techniques de mise en forme bas-coût et 

industrialisables. En outre, des poudres industrielles ont été volontairement utilisées dans ce 

projet. 

Parmi les techniques existantes, le coulage en bande a été choisi pour l'élaboration du 

substrat anodique BIT07 (EMPA) / NiO (JT Baker
®
) (40 : 60% massique), étant peu onéreux et 

très répandu dans l’industrie.  

Le principal enjeu de ce procédé réside dans la formulation des barbotines et nécessite 

une sélection rigoureuse et un contrôle précis des additifs utilisés. Dans notre cas, le mélange 

azéotropique bien connu MEK / éthanol a été utilisé comme solvant, associé à un système de 

liant standard à base de PVB (Butvar
®
 B-98). Des plastifiants respectueux de l'environnement 

ont été sélectionnés, avec comme plastifiant de type I le Solusolv
®
 S-2075 et comme plastifiant 

de type II le PEG400 ; le Nuosperse
®
 FX-4086 a été utilisé comme dispersant. 

Dans une première série de formulations, l'influence des conditions de séchage et de la 

teneur en liant sur le comportement en fissuration des bandes a été étudiée sur la base d’un 

ratio liant : plastifiants de 2 : 1. La teneur en liant optimale a été déterminée à 6% massique 

(pourcentage relatif à la masse de poudre). Toutefois, des problèmes de reproductibilité ont été 

rencontrés. Des essais avec une augmentation du contenu en plastifiants de type I et / ou II pour 

promouvoir la déformation plastique et le stress qui peut être stocké dans la matrice polymère 

du liant ont conduit à la détermination d'une recette impliquant un ratio liant : plastifiants 

proche de 1 : 1. Cette recette a été validée avec des poudres de BIT07 provenant de différents 

fournisseurs. 

Les conditions de pré-frittage optimisées pour les substrats anodiques sont une 

température de 1150°C pour un temps de pallier de 6 heures, avec une vitesse de chauffage et 

de refroidissement de 1°C / min. La couche d'électrolyte BIT07 a été déposé par vacuum slip 
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casting (VSC
®

) et co-frittée à 1350°C pendant 9 heures (vitesse de montée et descente en 

température de 1°C / min), résultant en une couche d’électrolyte fine (8 - 10 um), dense, 

d’épaisseur homogène, et ce de manière reproductible. 

Les trois cathodes La1.95NiO4 +  (LaN), Nd1.97NiO4 +  (NdN) et Pr1.97NiO4 +  (PrN) ont 

été déposées par sérigraphie sur les demi-cellules produites. Une bonne adhérence entre BIT07 

et les cathodes LaN et NdN a été obtenue, tandis que PrN s’est facilement délaminée. 

La première génération de cellules BIT07 / NiO | BIT07 | LnN (avec Ln = La, Nd, Pr) a 

été mesurée électro-chimiquement sous balayage d’hydrogène sec à l’anode et d’air à la 

cathode. La meilleure performance a été obtenue pour la cellule impliquant LaN comme 

cathode, avec une densité de puissance maximale à 700°C d'environ 80 mW cm
-2

. Ces 

performances restent néanmoins bien en deçà des résultats reportés dans la littérature (sur pile 

bouton) pour le couple BIT07 / La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) (Pmax = 336 mW cm
-2

) ou pour 

le couple YSZ / NdN (Pmax> 500 mW cm
-2

) à la même température. Des valeurs de résistance 

série anormalement élevées (Rs) (> 1 Ω cm
2
) ainsi que des résistances de polarisation (Rp) 

également élevées ont été mesurées. De telles valeurs de Rs ont été attribuées à la résistance 

interne du banc de test. 

Par ailleurs, les valeurs d’OCV (Open Circuit Voltage) mesurées à 700°C apparaissent 

systématiquement faibles (< 0,9 V pour une valeur théorique au-dessus de 1,2 V). Les deux 

principales hypothèses formulées pour expliquer ce phénomène sont tout d’abord la présence 

de défauts microscopiques dans les couches d'électrolyte tels que des fissures, observées par 

microscopie électronique à balayage, et / ou une contribution électronique à la conductivité 

totale de BIT07. Des mesures d’impédance effectuées sur des pastilles denses de BIT07 pour 

trois lots différents de poudre ont montré une légère mais systématique diminution de la 

conductivité de la phase avec la pO2. Bien que les résultats semblent fortement dépendants des 

étapes de conditionnement de la poudre, ils semblent indiquer une faible conductivité 

électronique de type p de BIT07 sous atmosphère oxydante.  

Les résultats obtenus pour cette série de tests ont mis en évidence des performances 

insuffisantes des assemblages BIT07 / LnN ; cette conclusion a conduit à la conception d'une 

deuxième génération de cellules impliquant des optimisations architecturales. 

Pour améliorer la qualité de l'interface cathode / électrolyte, l'ajout d'une fine (2 - 3 um) 

couche barrière de Ce0.9Gd0.1O2-  (GDC) entre BIT07 et les trois nickelates a été étudié. Les 
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couches ont été déposées par sérigraphie sur demi-cellules et frittées à 1350°C pendant 2 

heures. Les cathodes ont été ensuite sérigraphiées et frittées à 1170°C pendant 1 heure. 

Pour les trois cathodes, une amélioration significative des performances a été observée 

avec l'ajout d'une couche barrière de GDC. Des valeurs plus élevées d’OCV ont été obtenues, 

ce qui peut s’expliquer soit par un remplissage (au moins partiel) des fissures présentes dans la 

couche d'électrolyte par la couche de GDC soit par un effet de blocage des électrons, GDC 

étant conducteur purement ionique sous air. Les meilleures performances ont été obtenues pour 

une cellule BIT07 / Ni | BIT07 | GDC | PrN, avec une densité de puissance maximale de 200 

mW cm
-2

 à 700 ° C. Une faible résistance de polarisation (0,29 Ω cm
2
) a été obtenue pour cette 

cellule, ce qui correspond à une amélioration d'un facteur 4 par rapport à la cellule sans couche 

barrière. Ces résultats sont prometteurs, en particulier comparés à ceux obtenus avec une 

cellule impliquant la cathode LSCF (Rp = 0,35 Ω cm
2
). La majeure limitation des performances 

des cellules paraît être les valeurs anormalement élevées des résistances séries. 

Ainsi, il apparaît que, comme pour le couple YSZ / LSCF, une couche barrière de GDC 

soit nécessaire, et ce contrairement à l'attente initiale qui était que l’ajout de cette couche 

pouvait être évité en associant des matériaux de structures cristallines analogues. Néanmoins, 

l'avantage de diminuer certaines contraintes thermomécaniques par l’association de matériaux 

aux coefficients de dilatation thermique proches persiste. 

Cette deuxième génération de cellules à base de BIT07 a été mesurée en mode 

galvanostatique à 0,7 V (I = 248 mA cm
-2

) pendant plus de 500 heures, avec un taux de 

dégradation moyen extrapolé assez élevé de 27% / kh. Bien que plusieurs hypothèses aient été 

avancées pour expliquer cette dégradation, d'autres expériences sont encore nécessaires pour 

une meilleure compréhension des phénomènes de vieillissement impliqués. 

D'autres tentatives d’améliorations de l'architecture des cellules ont été réalisées côté 

anode via l’ajout de couches d’anodes fonctionnelles BIT07 (MT2) / NiO et BLITiMn (EMPA) 

/ NiO (44: 66% massique), déposées par vacuum slip casting. Concernant BIT07 / NiO, une 

couche fonctionnelle fine (6 µm) et relativement dense a été obtenue, composée de grains plus 

fins. Les résultats électrochimiques préliminaires ne montrent cependant aucune amélioration, 

en raison d'une Rs élevée associée à une dégradation rapide des performances de la cellule. Des 

analyses post-test sur cette cellule n'ont pas révélé de défaillance expliquant ce phénomène, et 

la reproductibilité des résultats doit encore être évaluée avant de pouvoir conclure. La couche 

fonctionnelle BLITiMn / NiO s’est avérée plus épaisse (18 µm), assez poreuse (porosité 

supérieure à 45% après réduction), et l'interface entre l'anode et les couches d'électrolyte est 
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apparue détériorée. Les performances ont également été fortement réduites par l'ajout de cette 

couche, avec une augmentation importante de Rs et Rp. 

Par ailleurs, un autre essai a consisté en l'augmentation de la porosité des substrats 

anodiques par l’ajout d'un agent porogène. Du gel d’amidon a été sélectionné et utilisé dans les 

formulations de barbotines. Des bandes sans cracks et de bonne qualité contenant 2 et 4% 

massique de gel d'amidon ont été obtenues (BIT07 lot MT1) en modifiant la recette standard 

(teneur en liant plus élevée). La porosité des substrats a augmenté de 8% à 25% (avant 

réduction) lors de l'ajout de 4% massique de porogène. Toutefois, aucune cellule complète n’a 

pu être obtenue avec des anodes contenant du porogène à cause de la déformation des substrats 

anodiques pendant l’étape de pré-frittage. 

Enfin, une augmentation de taille a été réalisée avec succès à l’échelle du substrat 

anodique, avec une augmentation du volume des barbotines et l’obtention de substrats de taille 

11,4 × 11,4 cm
2
 après pré-frittage. Les substrats obtenus ont toutefois cassé lors de l'étape de 

dépôt de l’électrolyte par vacuum slip casting en raison d’une planéité non parfaite couplée à 

une tenue mécanique insuffisante. Des résultats préliminaires prometteurs ont été obtenus pour 

des demi-cellules de plus petite taille (4 × 4 cm
2
) produites par sérigraphie de la couche 

d'électrolyte directement sur les bandes crues, évitant ainsi le problème de casse des substrats 

pré-frittés. 
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General introduction 

 

 

 

1. Energetic context 

Nowadays, main conventional power generation technologies rely on fossil fuels. 

Population growth and increased standards of living led to an overall rise in the energy 

consumption in the last decades (as can be seen in Fig. I-1), being faced with problems of 

fossil resources depletion. For instance, according to the BP statistical review of world energy 

2012 [1], lifetime of oil, gas and coal reserves are estimated to be around 55, 65 and several 

hundred years, respectively, in a “business-as-usual” scenario [2].  

 

 
 

Figure I-1: World total primary energy supply from 1971 to 2009 by fuel (Mtoe) [3]. 

* Other includes geothermal, solar, wind, heat, etc. 

  

 In most of the actual energy systems, based on internal combustion engines, more than 

60% of the energy input is wasted. To conserve resources and increase the lifetime of the fossil 

fuels, efficiency improvements should be at the forefront of the efforts. 

 In addition, environmental issues stemming from the use of internal combustion 

engines have also been addressed. Indeed, combustion of fossil fuels is known to generate soot, 

sulphur compounds and other noxious emissions, well recognised as major contributors to the 
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global warming and local air pollution [4]. For instance, atmospheric concentration of CO2 has 

grown from around 300 ppm in 1958 to above 390 ppm today [5], the main contribution 

coming from the electric power generation sector, relying extensively on coal, followed by 

transport and industry [2].  

 Major efforts are therefore needed towards a more efficient and environmentally benign 

use of the valuable fossil resources, but also towards alternative (renewable) energy sources.  

 Originating from the 1973 oil crisis, energy security concerns prompted investments for 

the development of alternative sources. Thus, both nuclear and renewable energies were 

developed, representing 5.8% and around 13.3% (0.8% from alternative energy sources as 

wind, solar or geothermal) of the global energy supply in 2009, respectively, according to the 

IEA (International Energy Agency) [3]. However, concerns about waste, safety and security 

have still to be addressed before a further increase of the proportion of nuclear in the energy 

mix, and renewables are usually characterised by their large intermittency or interruptability, 

making further expansion relying on substantial improvements in storage technologies. 

Problems of cost, if not of their environmental impact in some cases, are also limiting factors 

[2].  

 In this context, fuel cell systems are attracting a great interest worldwide for a rapid 

emerging “energy technology” for the efficient conversion of fossil resources, but also for 

playing a substantial role in the sustainability of the energy sources in association with 

hydrogen. Following efforts of several big industrial groups and automobile builders, fuel cells 

are now on the verge of a commercialisation [6].  

In this chapter, the different technologies of fuel cells will be briefly described, with a 

concern on their potential / already existing applications. Solid Oxide Fuel Cells (SOFCs) will 

then be highlighted, with a description of their working principle, their different configurations, 

designs and fabrication processes. Finally, a state-of-the-art of the materials used for the 

different core cell components will be presented.  

2. Generalities about fuel cells 

2.1. Fuel cell as an efficient energy conversion technology 

 Fuel cells are devices that convert the chemical energy of a fuel directly into electrical 

energy. A cell consists of two electrodes (the anode and cathode) separated by an electrolyte. 

As can be seen in Fig. I-2, fuel (say hydrogen) is fed to the anode where it is oxidised and the 
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produced electrons are released to an external circuit. An oxidant (oxygen from air typically) is 

reduced at the cathode side. The electron flow (from the anode to the cathode) through the 

external circuit produces direct-current electricity. The electrolyte conducts ions between the 

two electrodes.  

 In practice, to build voltages, a fuel cell is constituted by a large number of these units 

to form stacks, electrically connected by interconnectors that allow the circulation of the 

current.  

 

Figure I-2: Schematic diagram of fuel cell operation [7]. 
 

 Fuel cells constitute a potential alternative energy conversion technology to the 

traditional power generation systems: they combine the advantages of both combustion engines 

and batteries. Indeed, they can operate continuously as long as fuel is available, with 

characteristics comparable to batteries under load conditions [8-9]. Fuel cell systems perform 

with the highest efficiencies compared to conventional distributed energy systems, and offer 

unique operational characteristics such as low emissions, low noise, off-grid capability, 

scalability and reliable power generation to almost any device requiring electrical power [6, 8, 

10-12]. They compete to replace a range of power supplies in many portable, stationary and 

transport applications, from battery chargers to power plants or power-to-cars, making them 

unique in terms of the variety of their potential applications [11].  

2.2. Types of fuel cells 

 In practice, fuel cells can operate in a wide range of temperatures (50 - 1000°C) 

depending on the nature of their electrolyte, and are usually classified regarding this 

component.  

 Five major fuel cell technologies can be differentiated: the Proton Exchange Membrane 

Fuel Cell (PEMFC), the Alkaline Fuel Cell (AFC), the Phosphoric Acid Fuel Cell (PAFC), the 

Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). All kind of fuel 

cells share the potential of high electrical efficiency and reduced emissions, having however 
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unique characteristics linked to their different constituting materials and operating 

temperatures.  

 A comparison of these major fuel cells in terms of components, fuels, capacities, costs, 

applications, advantages and drawbacks is shown in Table I-1.  

 

Table I-1:   

Comparison of the different types of fuel cells [8, 10, 13]. 
 

Type PEMFC AFC PAFC MCFC SOFC 

Electrolyte 

Solid polymer 

membrane 

(Nafion) 

Liquid 

solution of 

KOH 

Phosphoric acid 

(H3PO4) 

Liquid solution 

of lithium, 

sodium, and/or 

potassium 

carbonates, 

soaked in a 

matrix 

Solid oxide 

electrolyte (ZrO2 

stabilised with 

Y2O3) 

Operating 

temperature 
50 - 100°C 50 - 200°C ~ 200°C 600 - 700°C 600 - 1000°C 

Charge 

carrier 
H

+
 OH

-
 H

+
 CO3

2-
 O

2-
 

Fuel Pure H2 Pure H2 Pure H2 
H2, CO, 

hydrocarbons 

H2, CO, 

hydrocarbons 

Efficiency 35 - 60% ~ 50% 40% 45 - 50% > 50% 

Power 

density 

(W cm
-2

) 

1.1 1 1.1 0.7-1 0.8-1 

Typical 

systems size 
< 1 kW - 100 kW 10 - 100 kW 

100 kW - 400 

kW 
300 kW - 3 MW 1 kW - 2 MW 

Applications 

Portable power 

backup power 

transportation 

distributed 

generation 

Military; 

space; 

portable 

power 

Transportation; 

commercial 

cogeneration; 

portable power 

Transportation; 

utility power 

plants, 

distributed 

generation 

Residential; utility 

power plants; 

commercial 

cogeneration; 

portable power 

Advantages 

High power 

density; quick 

start up; solid 

non-corrosive 

electrolyte 

High power 

density; 

quick start 

up, low cost 

components 

Heat waste; 

stable 

electrolyte 

characteristics 

High efficiency; 

fuel and catalyst 

flexibility; heat 

waste 

Solid electrolyte; 

high efficiency; 

fuel 

and catalyst 

flexibility; 

generate 

high grade waste 

heat 

Drawbacks 

Expensive Pt 

catalyst; sensitive 

to fuel impurities 

Expensive 

platinum 

catalyst; 

sensitive to 

CO2 in fuel 

and air; 

electrolyte 

management 

Expensive Pt 

catalyst; 

Corrosive 

liquid 

electrolyte; 

sensitive to fuel 

impurities; long 

start up time 

High cost; 

corrosive liquid 

electrolyte; high 

temperature 

corrosion; slow 

start up; 

intolerance to 

sulphur 

High cost; high 

temperature 

corrosion; slow 

start up; 

intolerance to 

sulphur 
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One can also mention the Direct Methanol Fuel Cell (DMFC), belonging to the PEMFC 

technology, and the Proton Conducting Fuel Cell (PCFC), belonging to the SOFCs. In PCFCs 

however the charge carrier is a proton and the water is produced at the cathode.  

Advantages and disadvantages provided are different depending on the kind of fuel cell 

and are related to their operating temperatures (linked with the nature of their electrolyte), 

having direct consequences on the trends for their respective commercial applications (Fig. I-

3).  

 

 
 

Figure I-3 : Chart for the foreseen applications of the different kinds of fuel 

cells (CHP = combined heat and power) [14]. 

 

Low temperature fuel cells (PEMFC, AFC) can be characterised by their rapid start-up 

and are thus competitive in mobile applications. However, they need a good quality of 

hydrogen supply with a low CO content in the fuel. On the contrary, thanks to their high 

operating temperatures, fuel cells as SOFC and MCFC are able to operate on fuels containing 

large fractions of carbon monoxide, and can thus run either with an external or internal 

reformer without extensive gas cleaning. In addition, waste heat can be recycled to co-generate 

additional electricity, with systems reaching total efficiencies up to 85%.   

2.3. Market applications: some examples 

 Fuel cells are commercially available today for power generation with sizes ranging 

from < 1 kW to several MW. These systems have achieved billions of kWh of successful 

operation at customer sites worldwide [12]: thousands of residential and commercial CHP 

(Combined Heat and Power) units installed in Japan, hundreds of PAFC and MCFC installed 

for large-scale CHP applications, and thousands of fuel cells providing back-up power for radio 

and telecom sites around the world [15].  
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 Among all the fuel cell technologies, the PAFCs were the first to be commercialised [6, 

14], with CHP systems up to 500 kW commercially available (suppliers as UTC Power with 

the PureCell
®
 systems, with 300 units installed [14, 16-17], or the FP-100i modules from Fuji 

electric). Also, prototypes up to 11 MW are under test [10].  

Regarding commercial success, the leader by far in terms of number of units is the 

PEMFC technology. For example, Ballard power systems Inc. is now commercialising the 

CLEARgen
TM

, a 1 MW PEMFC-based system running with hydrogen, for distributed 

generation [18]. PEMs are also widely developed for automotive applications: for example the 

Clean Hydrogen In European Cities (CHIC) project, started in 2010, is the largest international 

trial of hybrid fuel cell buses. This project is collecting data from over 60 buses deployment 

around the world and involves the implementation of 26 additional buses in five locations 

across Europe [19]. Automotive constructors such as Daimler, Honda, Toyota or Opel are 

already releasing fuel cell-powered vehicles, with tens of thousands units expected to be on the 

roads by 2015 [11]. So far, there are approximately 200 hydrogen refuelling stations worldwide 

(~ 70 being publically accessible, as the one in Frankfurt shown in Fig. I-4). The objective in 

this area is to hit the market by 2015 and to penetrate it significantly by 2020, with 500 

000 fuel cells powered electric vehicles and more than 1000 hydrogen filling stations available 

in Europe forecasted [20]. 

 

 
 

Figure I-4: Frankfurt hydrogen filling station, available as a bi-

product from a chlorine electrolysis plant and transported via a high 

pressure 1.7 km long transport line to the fuelling service station [19]. 

  

 The second most significant type of fuel cell is the DMFC, mainly found in the portable 

sector apart from some niche transport sectors (especially related to military applications). For 
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example, Toshiba launched in 2009 its Dynario fuel cell battery charger (Fig. I-5) with an 

initial production run of 3000 units, far outstripped by the demand [11, 21]. Other DMFC 

suppliers are Oorja in the U.S. or SFC Energy in Germany [15].  

 

 
 

Figure I-5: Toshiba’s DMFC as external power for mobile 

applications [21]. 

  

 FuelCell Energy is a MCFC manufacturer, with for example their 2.8 MW system 

DFC3000
TM

 running on natural gas, also commercially available [22]. POSCO Energy has also 

achieved the production of 100 MW MCFC units in 2011, with already 62 MW under 

operation since 2008 and 58.8 MW planned to be installed in Gyeongki, Korea, in 2012 [23]. 

SOFC technology is also attracting interest for a lot of industrial groups and R&D centres. Its 

lower maturity level compared to other fuel cell technologies due to several technical hurdles 

does not prevent SOFCs to be commercialised and demonstrated worldwide in different 

sectors. For residential applications, we can cite for example the 100 kW SOFC system 

running on natural gas or biogas, produced by Bloomenergy, with clients as Walmart, Google, 

eBay or Coca-Cola [24]. Panasonic started in May 2009 the commercialisation of the 700 W 

ENE-FARM systems running with natural gas, with 1000 units installed (from October 2011) 

[25]. Hexis is now demonstrating more than 100 natural gas-fuelled 1 kW Galileo 1000N 

systems (Fig. I-6) through the CALLUX project, and is planning to start commercialisation in 

2013 [26-27].  
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Figure I-6: Galileo 1000N system [28]. 

 

Note that the CALLUX project, started in 2008, achieved a million of hours of operation 

in june 2012, with 300 units (PEMFCs and SOFCs) installed in Germany at the end of the year 

2012 [26, 29-30]. Delphi is also releasing 5 kW SOFC-based auxiliary power units (APUs) for 

a wide range of fuels (natural gas, diesel, bio-diesel, propane, gasoline, coal-derived fuel and 

military logistics fuel) and residential and transportation applications [31]. The BlueGen
®

 2 

kW µ-CHP system running on natural gas is also released by Ceramic Fuel Cells Limited 

(CFCL), with over 150 Bluegen
®
 and integrated systems installed to date [32-33]. 

3. Solid Oxide Fuel Cells (SOFC) 

3.1. Working principle 

 An SOFC unit cell is composed of three parts: the solid electrolyte which separates 

oxygen and fuel to avoid direct combustion, the anode and the cathode where both 

electrochemical reactions are located. Oxygen (from air) is reduced at the cathode (equation 1); 

the O
2-

 anions are transported through the electrolyte and oxidise the fuel at the anode (Eq. 2 in 

the case of H2 as a fuel), with water (steam) as a product of the overall reaction (Eq. 3 in the 

case of H2 as a fuel).  

 

½ O2 + 2 e
-
 → O

2-
  Cathode: reduction of the oxygen (1) 

H2 + O
2-

 → H2O + 2 e
-
  Anode: oxidation of the hydrogen (2) 

H2 + ½ O2 → H2O  Overall reaction (3) 
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 Under open circuit conditions, with electrochemical potential of oxide ions equilibrated 

across the oxide-ions conducting electrolyte, a voltage difference appears between the cathode 

and the anode. The Nernst potential, E, is the Open Circuit Voltage or OCV and is given in 

terms of the various partial pressures as follows (Eq. 4) [34]:  

 

  

 

 

(4) 

with  the net free energy change, the electromotive force at standard pressure and operating 

temperature , the gas constant , the Faraday constant , the absolute temperature , the 

partial pressure of the oxygen in the cathode gas ,  and  the partial pressures of H2 

and H2O in the anode gas, respectively. As evidenced by the equation (4), the driving force of a 

SOFC is the difference of oxygen partial pressure between the anodic and the cathodic sides.  

 The Nernst potential gives the ideal open circuit cell potential. This potential sets the 

upper limit or maximum performance achievable by a fuel cell. In the case of an ideal cell (i.e. 

when the electrochemical processes are infinitely fast and for a 100% fuel utilisation), the 

potential of the electrodes would remain unchanged regardless of the current density. However, 

in practice, the fuel that is fed to a fuel cell is typically not completely converted, and a real 

cell exhibits large kinetic losses (overpotentials, polarisations or voltage losses) increasing with 

the current density, as can be seen Fig. I-7 [34]. 

 

 
 

Figure I-7: Current-voltage characteristics of a cell [34]. 
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 The voltage loss term (i) includes ohmic loss and polarisation or overpotential and 

refers to a number of terms with origins related to different phenomena occurring in the cell. 

The ohmic loss originates from the resistance to electronic and ionic flows in a material, and is 

generally dominated by the electrolyte resistance considering its low ionic conductivity. 

Concentration polarisation stems from the resistance to mass transport through the electrodes 

and interfaces and activation polarisation is the voltage drop due to the slow kinetics of the 

charge transfer reactions occurring at the electrodes / electrolyte interfaces [34]. The 

overpotentials of the cathode and the anode c and a, respectively, depend on the material 

properties (composition), the microstructure and the temperature (though the contribution of 

the cathode to the overall losses is usually larger).  

The aim of the fundamental and applied research is to decrease these overpotentials.  

3.2. Configuration and fabrication of SOFCs 

 Because the electrolyte is solid, various shapes are available and thus many designs 

have been devised over the years [9, 35]. With pressed discs or thimbles starting in the 1930s, 

most development has focused on planar and tubular designs since the 1960s, and other 

geometries became less popular. Both designs with their advantages and disadvantages have 

been widely studied and discussed [35] and will be here briefly described, as well as industrial 

conventional cell fabrication processes.  

3.2.1 Tubular SOFC design 

 Pioneered by US Westinghouse Electric Corporation (now Siemens Westinghouse 

Power Corporation or SWPC) in the late 1970s [14], the main advantages of tubular cells are 

higher mechanical and thermal stability and simpler sealing requirements [35]. Indeed, in the 

most common tubular design, the cell components are deposited in the form of thin layers on a 

cylindrical tube, sealed only at one end. Fuel flows along the outside of the tube, towards the 

open end, and air is fed through a thin alumina air supply tube located centrally inside each 

tubular cell, as can be seen in Fig. I-8.  
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Figure I-8: Tubular design of Siemens Westinghouse [36]. 

  

 In the latest design from Siemens Westinghouse, a cathode tube of 1 - 2 cm diameter is 

fabricated by extrusion (see section 2.2.3.) and sintered; an electrolyte layer (ca. 40 µm thick) 

is usually deposited by Electrochemical Vapor Deposition (EVD, see section 2.2.3.); an anode 

layer (ca. 100 µm thick) is deposited either by slurry application and / or EVD and the 

interconnect material is deposited by plasma spraying along the length of the cell [35, 37-38]. 

Cells with a length of 150 cm with an electrochemically active area of 1036 cm² can be thereby 

mass produced [35, 38]. Such tubular cells made with the state-of the art materials (lanthanum 

strontium manganese cathode, yttria stabilised zirconia electrolyte and nickel / yttria stabilised 

zirconia anode, see section 2.3) are reaching power densities of about 0.20 - 0.30 W cm
-2 

at 

1000°C [37-38].  

 These relatively low power densities are the result of the long path way for the current 

through each cell [14, 38]; the large voids within the stack structure (tubes) lead also to low 

volumetric power densities [14]. Thus, a decrease of the tube diameters down to 2 - 3 mm, so 

called microtubular SOFC, shortens the electrical paths, allowing higher power densities per 

volume unit as well as very high thermo-mechanical stability [38-39]. As alternative design, 

Siemens proposed the use of flat-tubes to decrease the costs, giving better compactness and 

increasing the contact areas between the cells [14]. Also, a tubular cell concept is pursued by 

Mitsubishi Heavy Industries, being an arrangement of multiple cells connected in series on one 

tube [38].  

 Another major disadvantage of the tubular design is the difficulty to reach competitive 

costs, caused by the design specific manufacturing technique: the EVD technique is complex, 

capital-cost intensive and requires vacuum equipment that hinders upscale to a cost effective 

and continuous manufacturing. Other techniques such as plasma spraying or slurry coating are 

investigated, and should lead to a substantial reduction of the costs [35].  

Interconnection

Electrolyte

Air electrode

Air flow

Fuel 

flow



Chapter I: General introduction 
 

 

12 

3.2.2 Planar SOFC design 

 A planar SOFC enables simple series electrical connections of cell components 

configured as flat plates (Fig. I-9), avoiding the long current path occurring through tubular 

cells [14]. The cells are stacked between bipolar plates, decreasing ohmic losses and increasing 

the power densities of the cells (up to about 2 W cm
-2

 at 800°C [35, 37])
 
and thus the 

performance of the stacks. Besides, the planar configuration allows the use of cost-effective 

fabrication techniques, as tape casting or screen printing. Another important advantage of the 

planar configuration is the possibility of easily processing thin electrolyte layers, making the 

ohmic losses comparable with the other types of fuel cells [14].  

 

 
 

Figure I-9: Planar SOFC design [40]. 

  

Planar SOFCs can be classified into three main configurations: electrode-supported, 

electrolyte-supported or metal (interconnect)-supported. One can notice a better mechanical 

strength for electrolyte-supported configurations, whereas anode supported cells offer the 

potential to decrease electrolyte thicknesses below 10 µm, reducing ohmic losses and thus 

increasing the performance. 

Advances in ceramic technology (tailoring of powder, fabrication processes...) have 

contributed to the increased interest for planar SOFCs starting from the 1980s [35]. However, 

in this configuration, gas-tight sealing materials are needed. The thermal stresses at the 

interfaces between the cells and the different stack components (interconnects and sealants) 

cause important mechanical degradation. Both issues of thermal stresses and wish to fabricate 

very thin components place a major constraint on the up-scaling [14].  

Oxidant
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3.2.3 Industrial shaping techniques 

 The fabrication processes for SOFCs can be distinguished in different ways. For 

instance, one can mention the following:  

- the design (planar, tubular) 

- the mechanical support (anode, electrolyte, cathode or metallic support) 

- the thickness of the component or layer 

- the elaboration of a substrate or a functional layer (coating). 

 In what follows, the separation will be made between substrate elaboration and coating 

technologies. 

a) Substrate elaboration technologies  

 Tape casting 

 In 1947, Glenn Howatt reported the process known today as tape casting (sometimes 

also called doctor-blading or knife-coating) and patented it in 1952. This technique is a basic 

fabrication process used for the elaboration of thin (down to 3 μm), two-dimensional films 

from any material that can be produced as a powder, with applications in many industries 

including food, electronic, paper, plastic and paint manufacturing [41]. This technique can also 

be used for manufacturing three-dimensional objects by the technique called LOM (laminated 

object manufacturing). Its application in the ceramic processing area gives the advantage to 

form large area, thin and flat ceramic or metallic parts.  

Tape casting is a fluid forming process consisting in formulating a slip (named slurry) 

with powders (ceramic and / or metal), solvents and organic additives. The casting is 

industrially done by placing the slip into a reservoir open in the bottom side; a polymeric tape 

is transported bellow the reservoir and the slip covers the transport tape, as can be seen Fig. I-

10. The thickness is being controlled by passing the transport tape and the coated slip through a 

doctor blade. The obtained layer (or tape) is dried to remove the solvents and the resulting 

green tape is then removed from the support and sintered to form a ceramic or metallic layer.  

For SOFCs, it is used mainly for the fabrication of the mechanical support in planar 

design. For almost all the anode-supported cells and for the electrolyte-supported cells, the 

substrate is now manufactured by tape casting, due to the low-cost, easy to use and continuity 

of the process, allowing additionally the manufacture of large areas and flat sheets of desired 

thicknesses and microstructures [43].  
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 A more detailed description of the process can be found in Chapter II. 

 

 
 

Figure I-10: Schematic of an industrial tape-caster [42]. 

 

 Pressing methods 

 Another technique to form two (three)-dimensional objects is to press the powders by 

cold, warm, hot, cold isostatic or hot isostatic pressing. For this, the powder is filled into a 

pressing unit or die and shaped by pressing (see Fig. I-11). This process can be done at 

different temperatures and pressures (uniaxial, isostatic…) and can eventually involve the use 

of additional polymeric resin.  

 

 
 

Figure I-11: Schematic illustration of the uni-

axial die pressing process. 

 

Uniaxial pressing in a die and isostatic pressing are commonly used for the compaction 

of dry powders in the ceramic industry, allowing the formation of simple shapes rapidly and 
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with accurate dimensions [44]. The main disadvantage of the pressing techniques, compared 

for example with tape casting, is that they operate discontinuously [45]. This is thus time-

consuming and therefore less frequently used for SOFC substrate manufacturing but rather in 

the ceramic industry for the elaboration of smaller geometries with complex structures. 

However, pressing techniques (cold and warm pressing) are applied for SOFCs manufacturing 

in some cases for instance if thicker substrates (i.e. thicknesses > 800 µm) are needed. 

 Extrusion 

 For extrusion, the powders are usually mixed with water-based plastics to form high 

viscosity slips, pushed or drawn through a die of desired cross-section [44]. This technique is 

low cost and continuous, allowing high production volumes from many types of raw materials. 

The process is illustrated in Fig. I-12. 

 

 
 

Figure I-12: Schematic illustration of direct extrusion [46]. 

 

 Extrusion is used in the ceramic industry if a continuous structure with a one direction 

elongation is needed, as for example the cathode supported tubular SOFCs developed by 

Siemens mentioned earlier. While its use in planar design presents limited advantages due to 

limitations in the substrate width / thickness ratio, extrusion is the appropriate technique for 

tubular and quasi-tubular designs [47-48].  

 Calendering 

 Calendering means the connection of more than one thin planar structure by pressing 

them together during rolling between two or more rollers. The process involves squeezing a 

softened thermo-plastic polymer / ceramic powder mixture between two rollers to produce a 

continuous sheet of material. Individual sheets can be calendered and joined to form the 

multilayer tapes required for SOFCs [49]. This technique is continuous and used to combine 

rod

diecontainer

stamp

dummy block billet
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the substrate with for instance one or two pre-fabricated functional layers. If the pre-fabricated 

layers are produced by tape casting, green tapes (e.g. without any sintering) are used, glued 

together by the remaining organics. Hence, calendering is a technique performed between 

substrate manufacturing and coating. The tape calendering process is illustrated in Fig. I-13.  

 

 
 
 

Figure I-13: Tape calendering process and green electrolyte / anode bilayer [50]. 

 

 As SOFCs move closer to the market, substrate manufacturing techniques which are 

continuous and already well-established in other application fields are preferred. The trend is 

clearly moving to tape casting for planar designs and extrusion for tubular designs.  

b) Coating technologies 

 Screen printing 

 The method of screen printing is over 2000 years old. Since the middle of the twentieth 

century, the applications for screen printing have broadened from primarily decorative uses 

into a process to deposit electronic circuit materials onto a substrate [51]. It is one of just few 

methods which allow covering many different substrates (wood, metal, plastic, glass ceramic, 

paper etc.). Today, one of the principal applications for screen printing is the production of 

current collection wires on the top of solar cells. Screen printing is the most widely used 

coating technique for ceramic planar supports. This technology is industrially established, 

scalable and can be introduced in a production line, thus ideal for low cost fabrication.  

The screen printing process involves the formulation of a paste containing powder and 

organic additives. The paste is rubbed with a squeegee, which moves across a screen with 

appropriate tension. The ink is pushed through the mesh onto the substrate placed under the 
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screen. A schematic illustration of the process is shown in Fig. I-14; a more detailed 

description can be found in Chapter II.  

 

  

 
Figure I-14: Sketch of the screen printing process [52]. 

 

The screen printing process is used in planar SOFCs for the coating of the 2 electrodes in 

the case of an electrolyte support, or in the case of an electrode or a metal support for the 

functional electrodes and the electrolyte. 

 Spraying methods 

 Spraying techniques involve the preparation of a suspension, sprayed on a substrate via 

a spray gun, either fixed with a moving piece or moving itself along the piece to coat, as 

illustrated in Fig. I-15. The main advantage of spraying techniques in comparison with for 

example screen printing is that non-planar and non-uniform substrates can also be coated. The 

spraying process is continuous, can be used with different geometry structures, is fast adaptable 

to variations of size and involves low equipment cost. However, in all the cases, spraying 

techniques suffer from overspray. The coating efficiency is thus reduced and the costs are 

consequently higher [43].  

Spraying of liquid for coating planar, tubular or three-dimensional supports is widely 

used in various industries, as automobile or electronics. For SOFCs, spraying methods like wet 

powder spraying were formally used for coating the cathode and electrolyte layers in the old 

Siemens tubular design; wet powder spraying can also be applied for coatings of functional 

layers or metallic interconnects with protection or contact layers. 
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Figure I-15: Positions of spray gun and component to be coated; with a) 

horizontal / horizontal and b) horizontal / vertical configurations, both 

with tubular designs, and c) vertical / horizontal configuration with planar 

and planar-structured designs [43]. 

 

As part of the spraying techniques, plasma spraying should also be mentioned as an 

elaboration technique for SOFCs, used for coating metal supported cells as a sintering step at 

high temperature and in oxidising atmosphere (usually air), which would lead to the oxidation 

of the metallic support, is here not needed. In this technique, a high-temperature plasma jet, 

emanating from an anode nozzle, will heat and accelerate particles, injected into a high-

temperature gas region by means of a cold carrier gas perpendicular to the axis of the plasma 

jet. The heated powders inside the jet region will impact and adhere to the substrate, forming a 

coating (Fig. I-16) [53]. 
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Figure I-16: Schematic diagram of atmospheric plasma spraying method [53]. 
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Among the existing techniques, one can mention atmospheric, low pressure, suspension 

and vacuum plasma spraying. 

However, such techniques are suffering several drawbacks such as remaining porosities 

in the electrolyte layers or difficulties to control the microstructure in case of electrodes 

coating. But due to the advantages of metal-supported cells (costs, low-temperature application 

etc.), coating with plasma spraying remains of great interest for many R&D groups worldwide 

[43]. 

 Slip casting 

The slip casting process is used to manufacture three-dimensional ceramic components. 

The slurry is poured into a permeable mould; the microporous nature of the mould provides a 

capillary suction pressure which drives the liquid from the slurry into the mould. A solid layer 

called a cast forms on the walls of the mould. Both cast and mould are then dried, and the cast 

is sintered to produce the final product [44].  

 The vacuum slip casting process is directly derived from the well-known slip casting 

process and is used for coating planar or tubular porous substrates. The technique works as a 

filtration process in which a suspension (of powder typically in ethanol) is applied on top of a 

planar substrate, or for tubular designs the substrate is inserted into the suspension. The solvent 

is drawn through the porosity of the substrates by the help of a vacuum and a smooth and 

homogeneous film of powder remains, forming high quality layers after sintering. However, 

the major drawback of this technique is its difficulty to be introduced in an industrial line.  

 An illustration of the process in the case of a tubular substrate is shown Fig. I-17. A 

more detailed description of the process applied to planar substrates is given in Chapter II. 
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Figure I-17: Schematic illustration of the vacuum slip casting process 

in the case of a tubular cathode substrate [43]. 
 

  Roller / curtain coating 

 In roller coating, a suspension is moved from a reservoir via various intermediate 

rollers; the substrate is coated while passing through a coating roller, as illustrated in Fig. I-

18a. Planar and even substrates are prerequisites for roller coating to achieve good 

homogeneous layer thickness. In curtain coating, the suspension is not applied by a coating 

roller but falls downwards a reservoir as a continuous curtain on the moving substrates, as can 

be seen Fig. I-18b.  

In both techniques, the overlapping suspension can be easily collected by a basin under 

the rolling machine and reused. Both roller and curtain coating are in-line technologies, highly 

automated and suitable for continuous mass fabrication. While up to now only first attempts 

have been made using these techniques, such technologies will most likely be applied in the 

future for cell manufacturing if SOFCs enter the mass market [43].  
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Figure I-18: a) Roller coating of functional layers and b) curtain 

coating of functional layers [43]. 

 

 Dip / Spin coating 

 Thin ceramic films can be prepared using a sol or solution by common methods such as 

dipping or spinning. For dip coating, the object to be coated is lowered into a solution and 

withdrawn at an appropriate speed, while for spin-coating the solution is dropped onto the 

object to be coated, which is spinning at high speed, spreading the suspension on its surface. 

Both processes are illustrated in Fig. I-19.  

 

 
 

Figure I-19: Schematic of the dip and spin coating processes. 
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While the dip coating process is applicable to planar or three-dimensional objects, spin 

coating is restricted to planar supports.  

 Both spin and dip coating have been used at laboratory scale for SOFC applications, but 

both hold the potential of industrialisation if integrated in a production line. 

 Gas phase deposition technologies 

 The first technique to be mentioned among the gas phase deposition technologies is the 

physical vapour deposition (PVD), which involves the transport via a gas phase of a material or 

target from a condensed matter phase to a “cold” substrate where the material condenses (Fig. 

I-20). Materials can be transferred into the gas phase by varying methods, including cathodic 

electrical arc evaporation, electron beam evaporation, laser ablation and sputtering (ions 

accelerated by an electric field). The PVD techniques enable casting high quality thin and 

dense layers but suffer several drawbacks as costs, non-continuity, slow deposition rates and 

difficulties to coat undercuts and similar surface features [43].  

 

 
Figure I-20: Sketches of PVD methods with a) target materials brought into the gas phase by 

magnetron sputtered energetic argon ions and b) target materials melted with a focused electron 

beam [43]. 

 

 The second gas phase deposition technique is the chemical vapour deposition (CVD), in 

which a chemical reaction takes place in the gas phase or on the surface of the substrate to be 

coated. Gaseous precursors diffuse to the sample and then react, thus creating the desired 

material. Some variants of the process exist, as for example plasma assisted CVD or PA-CVD, 

where a plasma near the surface to be coated helps controlling the position of the reaction, or 
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electrochemical CVD (EVD), a two-step process involving first a normal CVD deposition 

followed by a further growth of the layer, done in between ions moving from the substrate and 

the gas flow containing the precursors [43]. 

Chemical vapour deposition (CVD) constitutes an important technology for the manufacturing 

of thin solid films in semiconductors, microelectronics or solar cells [54]. For SOFCs 

application, EVD has been used by Siemens Westinghouse for coating tubular cathode-

supported cells [55]. However, one major disadvantage concerns the precursor materials, 

difficult to purchase in certain processes and generally expensive [43]. 

 

 
 

Figure I-21: Sketch of the different stages during the CVD / EVD [49]. 
 

 

3.3. State-of-the-art of SOFC materials 

3.3.1 Electrolyte materials 

 For solid oxide fuel cells, the electrolyte membrane is, ideally, an ionic conductor and 

an electronic insulator. It performs three critical functions: 

- separation of the oxygen from the fuel to avoid direct combustion. This implies that this 

membrane has to be gastight and chemically stable regarding the 2 atmospheres (oxygen partial 

pressure range 0.21 > pO2 > 10
-21

 atm), 

- electronic insulation, 

- oxygen ion diffusion to feed the electrochemical reaction at the anode (ionic 

conductivity typically ≥ 10
-2

 S cm
-1

 at the operating temperature). 

 Additionally, good chemical and thermo-mechanical properties of the electrolyte are 

required (i.e. Thermal Expansion Coefficient or TEC, reactivity, adherence…). 

The existing electrolyte materials are described below. 

gas stream Ar   +  MeClx

gas stream air   +  H2O

stage1                 2                  3                   4
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a) Zirconia-based 

 Yttria stabilised zirconia (ZrO2; 4 - 10% Y2O3) or YSZ 

 Oxide ion conductivity was first observed in ZrO2 containing 15 Wt% Y2O3 by Nernst 

in the 1890s. Yttria is added to stabilise the conductive cubic fluorite phase, as well as to 

increase the concentration of oxygen vacancies and the conductivity [56-59].  

 The first solid oxide fuel cell using this electrolyte was manufactured in 1937 after the 

works of Baur and Preis [59].YSZ fulfils the electrical requirements for a high temperature 

SOFC (conductivity around 10
-1

 S cm
-1

 at 1000°C), and its good mechanical properties have 

been extensively covered in the literature [6, 56, 60-61]. For these reasons, YSZ is the standard 

state-of-the-art electrolyte material for SOFCs. 

 Nevertheless, the conductivity of this electrolyte decreases rapidly with the 

temperature, and problems of penalising chemical reactivity of this electrolyte with common 

cathode materials [56-57, 62-63] led to the need to find alternative materials. 

 Other zirconia-based oxide ion conductors 

 The ionic conductivity of electrolytes can be maximised through composition 

modification by selecting an appropriate aliovalent dopant and its optimal concentration. Over 

the past 4 decades, solid solutions of ZrO2-M2O3 (M = Sc
3+

 [56-59, 62, 64-70] Yb
3+

 [57, 59, 

64-66, 68-69], Er
3+

 [57, 64-66, 68], Dy
3+

 [59, 64-66, 68], Gd
3+

 [59, 64-66, 68], Eu
3+

 [59, 64, 

66, 68], La
3+

 [57, 68], Nd
3+

 [57, 68], Sm
3+

 [57, 68], Ho
3+

 [68], Pr
3+

 [68], Tb
3+

 [68], Lu
3+

 [68], 

Ce
3+

 [56, 64] In
3+

 and ZrO2-MO (M’= Ca
2+

 [56-57, 68], Mg
2+

 [68]) have been studied. Doping 

of ZrO2 with alkaline earth metal cations (A
+
) is much less effective compared to rare earth 

dopants. 

 Fig. I-22 shows the influence of selected dopants on the total conductivity of the 

electrolyte at 1000°C, depending on the amount of dopant. Scandium doped ZrO2 (ScSZ) 

exhibits a significantly higher conductivity than YSZ and is therefore a promising material for 

IT-SOFC. However, price and availability of scandium is uncertain [57, 60, 62] and may limit 

further use of this material. Some attempts have been made with ternary systems with the aim 

to increase the conductivity, enhance the stability of Sc-based materials or reduce the cost by 

mixing rare earths with cheaper alkaline earth dopants [65]. For instance, the company Kerafol 

(Keramische Folien GmbH) supplies two types of electrolyte substrates based on ScSZ; one 

ternary doped with ceria to stabilise the cubic phase or with yttria to improve the mechanical 

strength [71]. 
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Figure I-22: Composition dependence of the electrical conductivity at 1000°C 

for ZrO2 -Ln2O3 solid solutions (Ln = lanthanide) [64]. 

 

b) Ceria-based 

 The properties of electrolytes based on CeO2 have been considered in many review and 

survey papers [58, 65]. Over the past three decades, many substitutions have been attempted on 

ceria in order to increase its anionic conductivity, mainly with alkaline earth or rare earth 

oxides. Systems based on CeO2-M2O3 (M = Gd
3+

 [57, 59-60, 62, 64, 72-74], Sm
3+

 [59-60, 62, 

72-73, 75], Y
3+

 [59, 62, 72-73], Dy
3+

 [72], Nd
3+

 [72], Eu
3+

 [72], Yb
3+

 [72], La
3+

 [62, 72-73], 

Sc
3+

 [73]) and CeO2-M’O (M’ = Mg
2+

 [72-73], Sr
2+

 [72-73], Ba
2+

 [72-73], Mg
2+

 [72-73], Ca
2+

 

[59]) were reported.  

 Many co-doped ceria electrolytes have been as well investigated, as for example (Gr
3+

, 

Pr
3+

), (Sm
3+

, Ca
2+

), (La
3+

, Sr
2+

) or (Gd
3+

, Mg
2+

) [75]. The compositions CeO2-Gd2O3 (GDC) 

and CeO2-Sm2O3 (SDC) show conductivities significantly higher than those of zirconia-based 

electrolytes [59, 62, 64, 70, 74] (Fig. I-23) and therefore have been extensively examined for 

IT-SOFC applications.   
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Figure I-23: Dependence of the ionic conductivity on ionic radius of M
3+

 for 

(CeO2)0.8(M2O3)0.2 at 800°C [59]. 

 

However, at low oxygen partial pressures, ceria-based oxide ion conductors are 

partially reduced leading to a predominantly n-type electronic conductivity in a large fraction 

of the electrolyte on the anodic side, decreasing the efficiency of the cells [57, 59-60, 64, 70, 

74]. To minimise such efficiency losses, these electrolytes are used in the low temperature 

range (e.g. 550°C) [59-60, 64], and the electronic leakage can be prevented by protecting the 

ceria electrolyte with a thin YSZ barrier layer on the anodic side [59]. However, the 

performance of multilayer cells is decreased due to the formation of a resistive phase at the 

YSZ / ceria interface [65]. Nevertheless, for low temperature operation, doped-ceria 

electrolytes remain to date one of the best candidate materials [60]. 

c) (La,Sr)(Ga,Mg)O3 and other oxygen-deficient perovskite structures 

 The perovskite structure, with general formula ABX3, where A is a large metal cation, 

B a transition metal and X a halogen or oxygen, comprises a large family of compounds with a 

wide variety of applications such as SOFC, ferroelectrics, superconducting materials and 

oxidation catalysts [59]. The possible combinations fulfilling the total charge (+6) on A and B 

are (1 + 5), (2 + 4), (3 + 3) and also in more complex ways on co-doping on both A- and B-

sites, giving to perovskite-type compounds a wide variety of properties. But only a few 

perovskite phases are purely ionic in their behaviour.  

 High oxygen ion conductivity can be achieved in LaGaO3 by substituting lanthanum 

with alkaline earth elements and incorporating divalent metal cations into the gallium sublattice 

[65]. Lanthanum gallate materials La1-xSrxGa1-yMgyO3-δ (LSGM) were reported as superior 
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oxide ion conductors, with good chemical stability and negligible electronic conductivity over 

a broad range of oxygen partial pressures [57, 64-65]. Further improvement of the LSGM 

composition properties can be obtained by introducing a small amount of Co on B-site, without 

introducing electronic conductivity [65, 76]. Disadvantages of LaGaO3-based materials include 

possible reduction and volatilisation of gallium oxide, relatively high cost of gallium and a 

significant reactivity with perovskite-type electrodes under oxidising atmospheres and with 

nickel metal constituting the anode in reducing atmospheres [57, 65, 70, 74, 76].  

 Other lanthanum-based perovskites, including LaAlO3, LaScO3, LaInO3, LaLuO3 and 

LaYO3 doped on A and B-site typically with Sr and Mg [77] are oxide ion conductors [56, 77-

78]. Especially, starting from an initial work of Takahashi and Iwahara in 1971 [79], many 

researches have been made on Al-based materials. Thus, compounds as Ln1-xMxAlO3 (Ln = 

Yb
3+

, Y
3+

, Gd
3+

, Sm
3+

, Nd
3+

, Pr
3+

, La
3+

 [59, 77], Ba
3+

 [56]; M = Ca
2+

 [80], Ba
2+

 [59, 81], Sr
2+

 

[81]) and co-substitutions on the aluminium site with Mg
2+

, Ga
3+

, In
3+

, Sc
2+

 [77] have been 

studied. But these phases exhibited mixed electronic and ionic conductivities at high partial 

pressures of oxygen, and instability in reducing atmospheres in the case of the indates. Also, 

aluminates are mainly mixed ionic / electronic conductors [77].  

 Titanate-based phases have also been investigated as potential electrolyte materials, 

with doped-CaTiO3 the most conducting ones [79]. 

d) Others 

 LAMOX 

 These materials based initially on the La2Mo2O9 parent compound present a 

competitive high ionic conductivity, with a phase transition above 600°C to a structure with a 2 

orders of magnitude higher conductivity. Unfortunately, the molybdenum can be reduced and 

therefore induce electronic conductivity. There have been numerous studies to overcome both 

the reducibility and the phase transition with appropriate doping, such as La2(Mo2-xMx)2O9 

with M = Al [82], Fe [82], Mn [82], V [65, 83-84], Nb [82, 85], Ta [82, 85], Cr [83-84], S [83-

84], Re [83-84],W [65, 83-84, 86] or La2-xM’xMo2O9 with M’ = Na [82], K [83], Rb [82], Ca 

[82], Sr [83], Ba [83], Pb [82], Y [84, 87], Ce [82], Nd [84, 87], Sm [82], Eu [82], Gd [84, 87], 

Dy [82], Er [82], Yb [82], Bi [65, 83] and also on the oxygen site with F [88]. In most of the 

cases, the simple cubic structure is stabilised at room temperature, the phase transition being 

suppressed.  
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 The maximum conductivity was found for the compositions La1.7Bi0.3Mo2O9-δ, 

La2Mo1.7W0.3O9-δ and La2Mo1.95V0.05O9-δ [65]. But the electronic contribution to the total 

conductivity of LAMOX in reducing atmospheres increases with the temperature [5]. Doping 

of molybdenum by tungsten limits the reducibility, but the stability of La2Mo2O9-based 

materials has still to be explored, some of them exhibiting degradation at moderate oxygen 

partial pressures [65]. The properties of LAMOX seem, therefore, rather inappropriate for 

practical applications. 

 Apatite-type 

 Another group of ionic-conductors, the apatite type A10-x(MO4)6O2±δ where M = Si, Ge 

[89] and A is a rare earth or alkaline earth cation (A = La, Pr, Nd, Sm, Gd, Dy [90-92]) have 

been widely studied over the past 3 decades [65]. Rare earth silicates with apatite-type 

structure are promising materials for IT-SOFC, the phases with germanium presenting 

drawbacks as high volatility, tendency to glass formation and cost of GeO2 precursor [65]. 

Doping on A-site with Ba
3+

, Sr
2+

 or Ca
2+

 or on B-site with Al
3+

, Mg
2+

 or Ti
3+

 have also been 

studied, with particular interest on Al- and Mg-doped phases. The lanthanum-based 

compositions exhibited the highest ionic conductivities, especially for A-site deficiency and 

doping with Mg or Al on the silicium site [82, 93-94]. But the extremely high sintering 

temperature of this family of materials remains still a problem for the cell processing [82]; also, 

little is known about their compatibility and performance with current electrode materials [58]. 

An improvement of the sinterability can be achieved by doping with transition metal cations 

such as Fe, with observed enhancement of the total conductivity, the ionic transport remaining 

the main contribution [94-96].  

 BIMEVOX Aurivillius phases 

 Among oxygen ion conducting materials, the bismuth oxide with a fluorite-related 

structure -Bi2O3 exhibits the highest conductivity (1 S cm
-1

 at 750°C [97]) due to its 

extremely open crystal structure. Unfortunately, this material possesses several disadvantages 

such as instability in reducing atmospheres, volatilisation of bismuth oxide at intermediate 

temperatures, high corrosion activity or low mechanical strength [65]. Compared to the 

fluorite-like Bi2O3-based oxides, the phase stability of doped γ-bismuth vanadate γ-Bi4V2O11 

(BIMEVOX) is substantially better. Partially doped phases on vanadium-site with transition 

metal cations such as Al [98], Cd [99], Ti [100], Co [65, 101], Ni [65, 102], Zn [102], Mo 

[102], Mg [58] or Cu [65, 101-103] exhibit some of the highest oxygen ion conductivity levels 

reported. For instance, the maximum conductivity (10
-3

 S cm
-1

 at 300°C) was observed for 
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Bi4Cu0.2V1.8O11-δ [101]. Doping with Y2O3 or Er2O3 [103] stabilises the high conducting phase. 

Nevertheless, these materials present a huge chemical reactivity as well as low mechanical 

strength [65], and at relatively low partial pressures of oxygen, Bi
3+

 ion is reduced to metallic 

Bi and the electrolyte is decomposed [59]. Similar decomposition is observed under applied 

DC voltage [65]. 

 Pyrochlore-type 

 Pyrochlore-structured materials of general formula A2B2O7 (A = lanthanides and B = 

transition metals) have been studied since the 1960s for their properties in ionic conductivity 

[65]. Usually, the maximum conductivity occurs for cation stoichiometry, e.g. compounds 

Gd2Zr2O7 and Gd2Ti2O7, but remains still low [65]. A value around 10
-4

 S cm
-1

 at 1000°C in air 

was reported by Mori et al. in 2002, increasing to 10
-2

 S cm
-1

 at PO2 = 10
-18

 atm [104]. The most 

highly conductive materials among this structural type are the titanates [56]. Samples of the 

series Sm2-xMxTi2O7-x/2 (M = Mg, Co, Ni) were also studied, with a conductivity increasing 

with the dopant content up to x = 0.4, with for Mg doping a corresponding conductivity value 

around 1.077 × 10
-3

 S cm
-1

 at 600°C [105].  

e) Ba2In2O5-based 

 The brownmillerite Ba2In2O5 

 The existence of Ba2In2O5 crystallising in a structure related to the cubic perovskite had 

first been reported by W. Kwestroo et al. in 1973. It was later shown that this compound 

crystallises in the brownmillerite structure, where In
3+

 ions are located in both tetrahedral and 

octahedral coordinations. This structure has been first described in 1897 by Törnebohm, but the 

real crystal structure has been determined only in 1971 by A.A. Colville et al [106].  

 The system crystallises in the space group Ima2 and is composed of sheets of distorted 

perovskite-like octahedra InO6 joined by the corners in between which are intercalated layers 

described as parallel chains of InO4 tetrahedra, as shown in Fig. I-24.  
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Figure I-24: The brownmillerite 

(Ba2In2O5) structure with Ba in light 

grey, O in black forming octahedra 

and tetrahedra with In at the centre. 

 

High oxygen ion conductivity abode 900°C was found in Ba2In2O5 by Goodenough et 

al. in 1990 [107] and the compound has been studied in the 90s for applications as oxygen 

sensors, oxygen pumps, oxygen permeable membranes and electrolytes for high temperature 

fuel cells [107-111]. This compound exhibits a first-order transition to a disordered 

orthorhombic structure around 930°C and then to a perovskite-type cubic structure at 

temperatures above 1074°C. This order / disorder transition comes with a jump of more than 

one order of magnitude of the ionic conductivity, due to the fact that the perovskite structure 

exhibits a greater degree of disorder of the oxygen vacancies [112]. However, a structural 

transition at such temperature is unacceptable from a technical point of view, causing internal 

stresses during heating and cooling. Therefore, efforts have been made to stabilise the 

perovskite structure at room temperature by substitutions on either the barium or the indium 

site. 

 The different substitutions 

 The easiest way to visualise the perovskite structure is in terms of BO6 octahedra which 

share corners in all three dimensions. The A cations occupy every hole which is created by 

eight BO6 octahedra, giving the A cation a twelve-fold oxygen coordination, and the B-cation a 

six-fold oxygen coordination, as shown in Fig. I-25. This structure offers a stable cation 

subarray within which O
2-

 ions may move. The disordered oxygen lattice in this structure 

offers very high oxygen ion conductivity. 



Chapter I: General introduction 
 

 

31 

 
Figure I-25: The perovskite (ABO3) structure. 

  

Examples of the substitutions performed to stabilise the high conducting perovskite 

phase at room temperature are presented in Table I-2.  

 
Table I-2: 

 Conductivities at 700°C of selected oxides derived from Ba2In2O5. 
 

Compound Rate 
Structure @ 

RT 

electric at 700°C 

under oxidising 

atmosphere 

(S cm
-1

) 

electric at 700°C 

under reducing 

atmosphere 

(S cm
-1

) 

Relative 

densities 
Ref 

Ba3In2CeO8  Brownmillerite 1.5 × 10-3 (400°C)  ND [107] 

Ba3In2HfO8  Brownmillerite 1.1 × 10-3  ND [107] 

Ba2In2O5  Brownmillerite 2.0 × 10-4  > 90% [113] 

Ba2In2-xCexO5+x/2 x = 0 Brownmillerite 7.0 × 10-4 3.2 × 10-4 ND [114] 

 x = 0.1 Brownmillerite 1.2 × 10-3 5.6 × 10-4 ND [114] 

 x = 0.2 Brownmillerite 1.6 × 10-2 1.5 × 10-2 ND [114] 

 x = 0.3 Cubic 1.0 × 10-2 7.0 × 10-3 ND [114] 

 x = 0.5 Cubic   poor [114] 

 x = 1 Cubic 5.6 × 10-3 3.1 × 10-3 ND [114] 

Ba2In2-xCuxO5 0 ≤ x ≤1 Brownmillertie   ND [115] 

Ba2In2-xGaxO5 x = 0.2 Brownmillerite 6.5 × 10-4  ND [110] 

 x = 0.4  8 × 10-3  ND [116] 

 x = 0.45 Brownmillerite 1.45 × 10-2  ND [110] 

 x = 0.5 Cubic 6.3 × 10-3  ND [117] 

 x = 0.6 Cubic 1.1 × 10-3  ND [117] 

 x = 0.7 Cubic 1.1 × 10-3  ND [117] 

 x = 0.8 Cubic 8.3 × 10-4  ND [117] 

 x = 0.9 Cubic 8.3 × 10-4  ND [117] 

Ba2In1.5MoO.5O5.75  Brownmillerite ~ 10-3  61% [118] 

Ba2In1.8Sc0.2O5  Brownmillerite 5.0 × 10-4  ND [111] 

Ba2In1.8Sm0.2O8  Brownmillerite 5.6 × 10-4  ND [111] 

Ba2In2-xTixO5+x/2


1-x/2 x = 0 Brownmillerite 2 × 10-4  ND [119] 

 x = 0.05 Brownmillerite 3.4 × 10-4  ND [119] 

 x = 0.1 Brownmillerite 1.1 × 10-3  ND [119] 

 x = 0.2 Tetragonal 4 × 10-3  ND [119] 

 x = 0.3 Tetragonal 3.5 × 10-3  ND [119] 

Ba2In2-xTixO5+x/2


1-x/2 x = 0.5 Cubic 4.0 × 10-3  ND [119] 

 x = 0.66 Cubic 2.7 × 10-3  ND [119] 
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Compound Rate 
Structure @ 

RT 

electric at 700°C 

under oxidising 

atmosphere 

(S cm
-1

) 

electric at 700°C 

under reducing 

atmosphere 

(S cm
-1

) 

Relative 

densities 
Ref 

Ba2In2-xTixO5+x/2


1-x/2 x = 0.8 Cubic 1.6 × 10-3  ND [119] 

 x = 1 Cubic 4.5 × 10-4  ND [119] 

 x = 1.2 Cubic 6.3 × 10-4  ND [119] 

 x = 1.4 Cubic 9 × 10-3  92% [120] 

Ba2In1.3V0.3O5.3  Brownmillerite ~ 10-3  62% [118] 

Ba2In1-xWxO5+3x/2 x = 0.1 Cubic 7.0 × 10-3  > 90% [113] 

 x = 0.2 Cubic 1.0 × 10-2  > 90% [113] 

 x = 0.5 Brownmillerite ~3 × 10-4  65% [118] 

Ba2In1.8Y0.2O7  Brownmillerite 5.6 × 10-4  ND [111] 

Ba2In1.8Yb0.2O6  Brownmillerite 5.0 × 10-4  ND [111] 

Ba2-xLaxIn2O5+x/2 x = 0 Brownmillerite 4.0 × 10-4  > 90% [95] 

 x = 0.2 Brownmillerite 2.2 × 10-3  > 90% [95] 

 x = 0.4 Brownmillerite 4.0 × 10-3  > 90% [95] 

 x = 0.6 Tetragonal 6.3 × 10-4  > 90% [95] 

 x = 0.8 Tetragonal 1.0 × 10-2  > 90% [95] 

 x = 1 Cubic 1.2 × 10-2  > 90% [95] 

 x = 1.2 Cubic 2.0 × 10-2  > 90% [95] 

BaZr1-xInxO3-0.5x x = 0 Cubic   ND [121] 

 x = 0.1 Cubic 8.0 × 10-5  ND [121] 

 x = 0.2 Cubic   ND [121] 

 x = 0.3 Cubic   ND [121] 

 x = 0.4 Cubic   ND [121] 

 x = 0.5 Cubic   ND [121] 

 x = 0.6 Cubic   ND [121] 

 x = 0.7 Cubic 1.8 × 10-3  ND [121] 

 x = 0.8 Brownmillerite   ND [121] 

 x = 0.9 Brownmillerite   ND [121] 

 x = 1 Brownmillerite 3.5 × 10-3  ND [121] 

Ba1.6Sr0.4In2O5  Brownmillerite   ~ 86% [122] 

Ba0.9Sr0.1In2O5  Brownmillerite   ~ 86% [122] 

Ba2-x-ySrxLayIn2O5+y x = 0.1    ND  

 y = 0.2 Cubic  4.0 × 10-3 > 90% [123] 

 y = 0.3 Cubic  7.1 × 10-3 > 90% [123] 

 y = 0.4 Cubic  0.20 > 90% [123] 

 y = 0.5 Cubic  0.40 > 90% [123] 

 x = 0.2    ND  

 y = 0.2 Cubic 1.2 × 10-2 5.0 × 10-3 > 90% [123] 

 y = 0.3 Cubic 2.8 × 10-2 8.9 × 10-3 > 90% [123] 

 y = 0.4 Cubic 5.0 × 10-2 0.20 > 90% [123] 

 y = 0.5 Cubic 0.10 0.50 > 90% [123] 

Ba0.3Sr0.2La0.5InO2.75  Cubic 0.1 (800°C) 0.25 (800°C) > 97% [124] 

 

This table illustrates the high interest in the literature for this family of oxides as 

electrolyte materials for IT-SOFC, because of their higher conductivities compared to the state 

of the art YSZ at 700°C. Notably, remarkable phases are Ba0.5La0.5InO2.7 and some of Ba-site 

double-substituted La / Sr ones [95, 123-124]. However, for these phases, electronic 
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conductivity appears in the low and high partial pressures of oxygen, making them unsuitable 

for application as IT-SOFC electrolytes. 

 The phases BaIn1-xTixO2.5+x/2□0.5-x/2 

 In the frame of the PhD work of A. Magrez done in the Institut des Matériaux Jean 

Rouxel de Nantes (IMN), phases BaIn1-xTixO2.5+x/2□0.5-x/2 have been extensively studied [125]. 

Indeed, substitution of In
3+

 with Ti
4+ 

induces a disordering of the oxygen vacancies and 

therefore an expected enhanced conductivity in comparison with the parent Ba2In2O5. Solid 

solutions with 0 < x < 0.7 have been successfully synthesised and characterised, exhibiting 

promising performance. The disordered perovskite structure has been stabilised at room 

temperature for x > 0.15. Higher titanium content, typically for x > 0.7 led to difficulties in the 

synthesis of phase pure materials. The measured conductivities presented in Table I-3 have 

been further enhanced during the PhD work of T. Delahaye by using samples with higher 

relative densities (Fig. I-26). All the phases in the range 0.2 < x < 0.7 exhibited conductivities 

in the order of 10
-2

 S cm
-1

 at 700°C [126]. The best compounds are BaIn0.8Ti0.2O2.6 (for x = 0.2) 

and BaIn0.3Ti0.7O2.85 (for x = 0.7).  

 

 
 

Figure I-26: Conductivities in air at different temperatures as a 

function of the composition x [126]. 

 

At low temperature, the conductivity of BaIn1-xTixO2.5+x/2 compounds is mainly protonic 

due to a partial hydration of these phases. For high Ti content (e.g. x > 0.25), this hydration 

phenomenon occurs without huge volume variation of the structure, and therefore without 

introducing mechanical stresses [127]. The composition with x = 0.2 (BaIn0.8Ti0.2O2.6) is 
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studied by our group for application in Proton Conducting Fuel Cells (PCFC) in the frame of 

the ANR-METPROCELL project. 

The amount of incorporated protons decreases with increasing x in BaIn1-

xTixO2.5+x/2□0.5-x/2. Thus, the Arrhenius plot of the ionic conductivity for the phase with x = 0.7 

(Ba0.3Ti0.7O2.85 or BIT07) presents a quasi linear evolution, indicating a weak water absorption 

[126]. In addition, the phase BIT07 is stable over a wide range of oxygen partial pressures and 

under CO2 gas up to 800°C, making it a material of interest for catalysis [126]. Indeed, the 

basicity of these compounds due to the high presence of barium can limit the formation of 

carbon deposit occurring under natural gas when BIT07 is used in an anode cermet (Ni / 

BIT07) [128-130], since CO2 and H2O sensibility could be actually an advantage to avoid 

anode coking, as recently shown in the case of Ba-modified cermets [131]. A basic support 

presents an affinity with the CO2 molecules and can adsorb them; these molecules can then 

oxidise the deposited carbon to form CO molecules [132]. 

3.3.2 Anode materials 

The main function of the SOFC anode is to provide reaction sites for the 

electrochemical oxidation of the fuel. Thus, the anode material must be stable in the fuel 

reducing environment and have sufficient electronic conductivity and catalytic activity for the 

fuel gas reaction at the operating conditions. The anode must be chemically compatible with 

adjacent components like electrolyte and interconnect at all temperatures (from the fabrication 

through assembling in a stack until operation). Several types of materials can be distinguished 

and are described in the following paragraphs.  

a) Ni-based cermet anode 

In principle, pure porous metallic electrodes (e.g. Ni, Pt, Ru etc.) can be used as anode 

materials [133]. Setoguchi et al. studied the electrochemical activity of Ni, Co, Fe, Pt, Mn and 

Ru and found that nickel exhibited the highest electrochemical activity for the oxidation of H2 

[133-134].  

To improve the matching of the thermal expansion coefficient between the Nickel and 

the state-of-the art electrolyte YSZ, composites Ni / YSZ, called cermets, were investigated. 

Moreover, introducing YSZ phase in the metallic electrode expands the number of reaction 

sites by increasing the triple phase boundary (TPB, where fuel, Ni and YSZ meet) length, as 

shown in Fig. I-27. Thus, a reduction of the electrode polarisation resistance by using a cermet 

was observed, making this composite the most common anode for SOFC [135].  
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Figure I-27: Reaction zones in the case of a Ni / 

YSZ cermet. 

 

 Despite the excellent electrocatalytic properties of these cermets for operation with H2 

fuel, Ni / YSZ based anodes suffer a number of drawbacks when using direct methane fuel, 

such as carbon deposition caused by cracking of methane or sulphur poisoning. Also, operating 

in the intermediate temperature range (typically below 700°C) increases the possibility for the 

nickel to be oxidised as the result of the increased partial pressure of oxygen under typical 

operating conditions [133]. 

 Successful modifications have been made on these cermets, for example by adding Mo, 

Ce, Mb, Co, Cu, Ru, Pt, Fe, Ti or alkaline earths (MgO, CaO, SrO, CeO2) [133]. Tests have 

also been made to introduce electronic conductivity in the oxide phase by doping with cations 

forming a redox couple under anodic conditions, resulting in a decrease of the ionic 

conductivity in these phases.  

 Cermets using other transition metal components have also been investigated [136]. 

The copper, iron and cobalt-based anodes exhibit poor electrochemical properties. Ternary 

component anodes such as Cu / CeO2 / YSZ showed encouraging results [137], Cu having no 

catalytic activity for the formation of C - C bonds. The effect of lanthanum additives on Cu / 

YSZ based anodes has also been studied, but the resulting cermets presented lower 

performance than the Cu / YSZ / CeO2 cermet anodes.  

 Ceria-based compounds exhibit mixed electronic-ionic conductivity in reducing 

atmospheres. Similar to Ni / YSZ anodes, Ni / doped ceria has also been formulated and tested 

by several groups indicating a high activity towards methane reforming and improved 

performance [138-140], as it was shown that CeO2 anodes can electrochemically oxidise dry 

methane and reduce the rate of carbon deposition [141]. Cermets such as Ni / CeO2-ZrO2, Ca-

CeO2 and Y-CeO2 were studied by Kawada et al without showing any improvement in 

comparison with Ni / YSZ [133]. On the other hand, better performance was reported for Ni / 
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samarium doped ceria cermets [142-143], performance further improved by doping with Pd as 

reported in the work of Hibino et al. [144]. Significant improvement of the electrocatalytic 

activity of these compounds by adding small amounts of Ni (or Ru) can be achieved, also 

improving the performance of these cermets under methane [145-147]. 

b) Ceramic-based anode material 

 The main attraction of such mixed ionic electronic conducting oxides (called MIEC) is 

the possibility of an extended triple phase boundary length (meeting point of gas, electrons and 

ions) over the complete surface of the ceramic particle due to the electronic conductivity of 

these oxides, as illustrated in Fig. I-28. Furthermore, mobile lattice oxygen ions could reduce 

the rate of carbon deposition while using dry methane [148]. 

 

 
 

Figure I-28: Reaction zones in the case of a 

mixed ionic electronic conducting anode. 

 

 Titanate-based oxides 

 Perovskite oxide materials are attracting increasing interest in application as SOFC fuel 

electrodes as alternatives to the traditional Ni / YSZ cermet [149]. Strontium titanate-based 

perovskite type compounds are relatively stable in fuel reducing atmospheres and present an 

ionic conductivity at low partial pressures of oxygen associated with electronic conductivity 

[150-151]. A slightly higher conductivity among these oxides is found for the substitution with 

yttrium, and can be even further improved by doping with Nb on B-site [142]. These phases 

have also been studied as composites with YSZ or ceria electrolytes. 

 Lanthanum strontium titanates as well as transition metal-doped lanthanum strontium 

titanates were fully studied for their resistance to sulphur poisoning (occurring while using 

natural gas as a fuel) [142, 149]. They show good total conductivities but a rapid degradation 

of the performance and a poor activity towards hydrogen oxidation [133]. (La,Sr)TiO3 systems 
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have been doped with several transition metals (Ni, Co, Cu, Cr, Fe and Ce), the most effective 

among these dopants being the cerium [142].  

 Other titanates investigated for SOFC anode applications include other A-site deficient 

lanthanides [152-153], (La,Ca)TiO3+δ [154] systems and BaTiO3 doped with iron [142]. 

Properties of titanium-doped YSZ were also studied, with the aim of adding electronic 

conductivity in the oxide with doping [142, 155], but showed a certain limit of solubility due to 

problems of reactivity [156].  

 Systems such as YSZ doped with terbia were as well investigated and showed effective 

electronic conductivity, but only in oxidising atmospheres [133]. Y2O3-ZrO2-TiO2 and Sc2O3-

Y2O3-ZrO2-TiO2 were also examined by Tao and Irvine [157], with promising results for the 

second system. Other TiO2-based oxides for methane conversion and oxidation as rutile-type, 

pseudobrookite-type, pyrochlore-type and V3O5-structure type showed some activities towards 

methane conversion in the intermediate temperature range [158]. Spinel solid solution series 

Mg2-yTi1+yO4, with 0 < y < 0.5 were also examined, with thermal expansion coefficients 

matching the state-of-the-art YSZ electrolyte and high temperature conductivities in the range 

0.2 - 2 S cm
-1

 [159]. 

 Lanthanum chromite 

 The perovskite LaCrO3 is quite inert for the reactions associated with reforming and 

carbon deposition. As for many perovskite-type compounds, the dominant p-type conductivity 

and catalytic activity can be enhanced by doping on the A-site with alkaline earth elements, 

such as Ca or Sr. Sr-doping improves the stability in reducing environment and reduces the 

polarisation resistance [142]. LaCrO3-based materials such as (La,Sr)CrO3 do not catalyse the 

carbon deposition and are therefore potential anodes for the direct oxidation of methane [160-

161]. Co-doping with Mg, Mn, Fe, Co, Cu and Ni on B-site have been also reported, with an 

improvement of the electrocatalytic activity in the case of Mn, Fe and Ni [162-163]. Other 

double substitutions were also widely studied, with compounds of formula La1-xAxCr1-yByO3-δ 

(A = Ca, Sr; B = Mg [133, 136, 161, 163-164], Ti [136, 142], Fe [133, 136, 142, 163], V [136, 

142, 164], Nb [136], Mn [133, 163], Ru [133, 142], Ni [133, 142, 163]. The compounds of the 

series La1-xSrxCr1-yMnyO3-δ (x = 0.2 - 0.3; y ≤ 0.5) present promising properties [136, 142, 

165], especially while using methane. Enhancing effect with the addition of a small amount of 

catalyst such as Ni and Ru was also studied [164, 166-167]. Vanadium addition has also been 

shown to improve the catalytic activity of lanthanum-strontium chromites [164, 168]. 
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 Other perovskites 

 Strontium-doped lanthanum vanadates La1-xSrxVO3 showed good sulphur tolerance 

with high conductivity level [169], further enhanced with nickel doping [170-171]. However, 

these phases present problems of stability in both oxidising and reducing atmospheres. Ferrites 

have also been investigated as potential anode materials, with in particular the lanthanum 

strontium cobaltite ferrites La1-xSrxFe1-yCoyO3-  but presented poor stability at low oxygen 

partial pressures [142, 172]. Chromium-doped lanthanum-strontium ferrites La1-xSrxFe1-yCryO3-

 have however shown promising results for catalysing the methane oxidation reaction [142]. 

Perovskite gallates and niobates have as well been studied, but presented low conductivities 

[142, 173-174]. Barium cerate doped with yttrium has also been investigated, with 

conductivities remaining relatively low [175-176].  

 Tetragonal tungsten bronze 

 Materials with the composition (Ba / Sr / Ca / La)0.6MxNb1-xO3-δ (M = Mg, Ni, Mn, Cr, 

Fe, In, Sn, Ti) have also been investigated as anodes for SOFCs because of their quite high 

electronic conductivity level and potential ionic one and their stability in both oxidising and 

reducing atmospheres for the phases containing Mg, In and Ti. The best performance is 

obtained with the Ti-based phases [133, 177]. 

 Pyrochlore and bismuth oxide 

 Conductivity of pyrochlore phases as Gd2Ti2O7 increases with doping with Mo or Mn 

on B-site. The same tendency is observed for Pr2Zr2O7±δ doped with Mn or Ce or Pr2Sn2O7±δ 

doped with In [142, 178]. However, they are not suitable for SOFC application due to redox 

stability problems and low conductivity levels [178-179]. Because of their mixed conductivity 

in reducing atmosphere, bismuth-based compounds were studied as anodes for direct 

hydrocarbon fuel cells, presenting good electrocatalytic activity towards hydrocarbon 

oxidation, but the question of the stability of Bi-containing phases still remains (vaporisation of 

metallic Bi) [180].  

 The phase Ba0.5La0.5In0.3Ti0.1Mn0.6O3-  

In his PhD work, François Moser studied the compounds BaIn0.3Ti0.7-yMyO3- , with M = V, 

Nb, Ni, Cr, Fe and Mn [181]. By doping with transition metals on B-site, the idea was to 

introduce electronic conductivity in BIT07 for application as anode material associated with 

BIT07 itself as an electrolyte. Thus, associating materials with close chemical compositions 

and with the same structure can lead to a good chemical and mechanical compatibility. Using a 
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mixed ionic / electronic conductor allows a decrease of the needed nickel content and therefore 

of the problem of coking under natural gas. Furthermore, it has been shown that oxygen 

vacancies associated with electronic conductivity facilitates the oxidation of the carbon deposit 

[182], as shown in Fig. I-29.  

 

 

Figure I-29: Scheme proposed by Hamakawa et al. for the self-

anti-coking performance of catalyst by lattice oxygen migration 

[182]. 

 

Among the studied compositions, monophasic compounds were obtained with 

substitutions with Fe and Mn. Substitutions on Ba-site with lanthanum successfully stabilised 

the cubic perovskite structure at room temperature. Under reducing atmospheres, the phase 

Ba0.5La0.5In0.3Ti0.1Mn0.6O3-  (BLITiMn) presented a higher conductivity than the corresponding 

substitution with iron (cf. Fig. I-30), and a better mechanical compatibility with BIT07 is 

expected with regard to the thermal expansion coefficients (12.6 × 10
-6

 K
-1

 for BLITiMn vs. 22 

× 10
-6

 K
-1 

for the phase with Fe). 

However, despite the good performance of this material with low nickel content, its 

high sintering temperature induces difficulties in the shaping (problems of connexion between 

the ceramic grains). Optimisation of the anode microstructure has to be done before 

appreciating further the potential application of this MIEC (Mixed Ionic Electronic Conductor) 

as an anode for SOFC. 
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Figure I-30: Corrected Arrhenius plots of the total conductivities of BIT07 

(triangles), Ba0.5La0.5In0.3Ti0.1Fe0.6O3-δ (full squares) and Ba0.5La0.5In0.3Ti0.1Mn0.6O3-δ 

(empty squares) under humidified Ar / H2 (95% / 5%) [181]. 

 

3.3.3 Cathode materials 

 The main function of the cathode is to provide reaction sites for the electrochemical 

reduction of the oxidant. Thus, the cathode material must be stable in oxidising environments 

and have sufficient electronic conductivity (around 100 S cm
-1

) and catalytic activity for the 

oxidant gas reaction at the operating conditions.  

 Since the SOFC operates at high temperatures (600 to 1000°C), the cathode must be 

chemically stable at different temperature ranges. The cathode in SOFCs is of particular 

concern for obtaining a high performing cell, especially at low operating temperature. In the 

60s, doped-In2O3 was used, and in the 80s LaMnO3 and LaCoO3 were proposed [7].  

Perovskite-type materials have been widely used as cathode materials in SOFCs [183]. 

For these ABO3 structures, Sm, Pr, Ce, Tb [60] and mixtures of rare and alkaline earths, such 

as La, Nd, Gd and Sr, Ca or Ba have been considered for A-site [70, 74, 183]. The B-site cation 

is an oxidisable or reducible transition metal such as Mn, Co, Ni, Cr, Cu or Fe [60, 64, 70, 74, 

183].  

More recently, oxides from the Ruddlesden-Popper crystal structure were also 

proposed. Different materials that have been studied and used as cathode materials for (IT-) 

SOFC are presented hereafter.  
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a) (La,Sr)MnO3 

 The focus has been mainly done on lanthanum manganite materials due to their stability 

in oxidising atmospheres, their sufficient electrical conductivity at 1000°C and their thermal 

expansion coefficient matching with the state-of-the-art YSZ electrolyte. Doping with Sr on A-

site (phases La1-xSrxMnO3 or LSM) increases the electronic conductivity of this kind of 

materials [6]. The absence of oxygen vacancies in LSM results in a conductivity that is almost 

purely electronic, the reduction of oxygen being then limited to the triple-phase boundaries. 

This is the main reason why LSM has no acceptable performance at lower temperatures.  

Furthermore, a chemical reactivity of LSM (and more generally nearly all the 

lanthanum-based cathodes) at temperatures above 1200°C with YSZ is observed, forming the 

insulating La2Zr2O7 phase at the cathode / electrolyte interface [60, 183]. This reactivity can be 

reduced by increasing Sr content (until 30% doping after which formation of SrZrO3 is 

observed) or creating a slight A-site deficiency in the materials [183].   

Two approaches have been studied to improve the performance of LSM: 

- adding an ionic conducting phase to extend the surface area. Composite cathodes made 

with LSM-YSZ exhibited good performance [60].  

- inducing ionic conductivity in LSM with appropriate doping of the structure. Indeed, 

replacing La by other rare earths elements as Pr, Nd, Sm, Gd, Yb or Y leads to performance 

improvement of the cathode and a decrease of the penalising reactivity with zirconia-based 

electrolytes [184].  

 The Sr-doped PrMnO3 were reported to be suitable cathode materials for IT-SOFC, 

with electrical conductivity levels reaching 226 S cm
-1

 at 500°C [136, 185]. Further improved 

cathodes have been developed by replacing Sr with Ca, giving the phases Pr1-xCaxMnO3 [136, 

186]. As concerns the doping on B-site, Al, Ga, Co, Fe, Sc or Ni have also been attempted [60, 

183, 187]. The systems Sr1-xCexMnO3-δ have also been reported as promising for IT-SOFC, 

especially when co-doping with Co on B-site [188].  

b)  (La,Sr)(Co,Fe)O3 

 Usually, cobalt-based materials display higher ionic and electronic conductivities than 

the other cathode materials. La1-xSrxCoO3-δ or LSC presents high activity for oxygen reduction. 

However, the presence of cobalt leads to thermal expansion coefficients significantly higher 

than the standard electrolyte materials, which can result in a delamination of the cathode or 

cracking of the electrolyte due to thermal stresses [70]. Furthermore, these perovskite-type 
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materials react widely with YSZ, resulting in the association of these cathodes preferentially 

with ceria-based electrolytes, or by using a diffusion barrier layer in between the cathode and 

the electrolyte [64].  

 To decrease the thermal expansion coefficient mismatch, different lanthanides (La, Pr, 

Nd, Sm, Dy and Gd) have been studied as A-site cations. Among these perovskites, those 

incorporating Pr exhibited the highest electrical conductivity levels (due to the additional Pr
3+

 / 

Pr
4+

 valence change). But the problem of high thermal expansion coefficients remains, as well 

as the huge reactivity with YSZ [189]. Doping with Cu or Mn on B-site can further enhance 

the ionic conductivity and catalytic activity of these cathodes [115-116], but without 

decreasing the thermal expansion coefficients.  

 Phases Ln1-xSrxFeO3 (Ln = La, Sr, Pr or Nd) have also been reported [183, 190]. Sr-

doped LaFeO3 (LSF) cathodes show promising electrochemical performance, stability, 

significantly reduced reactivity with YSZ and thermal expansion coefficients matching with 

YSZ and GDC [183, 191]. A complete anode-supported cell with YSZ electrolyte and LSF 

cathode doped on B-site by Cu exhibited power densities in the range of 1.35 - 1.75 W cm
-2

 at 

750°C and 0.7 V [192]. 

More recently, phases La1-xSrxCo1-yFeyO3-δ (LSCF) have been extensively examined 

and exhibited excellent performance associated with a GDC electrolyte (1.76 W cm
-2

 at 800°C 

and 0.7 V [193-194]. But these cathodes are generally incompatible with YSZ and the 

strontium tends to diffuse out of LSCF, leading to a degradation of the performance [183].  

 Phases with praseodymium on A-site showed also promising results for IT-SOFC 

applications, with a maximum total conductivity of 1040 S cm
-1

 at 300°C measured by Meng et 

al. for the phase Pr0.6Sr0.4Co0.8Fe0.2O3-δ [195]. 

 The compound family Ba1-xSrxCo1-yFeyO3-δ (BSCF) shows excellent electrochemical 

performance. For example, a power density of 1.01 W cm
-2

 at 600°C was obtained with a 

BSCF cathode on a NiO / Samarium doped ceria (SDC) anode and SDC electrolyte [196]. 

Further doping on A-site with for example Sm or Nd to improve the electronic conductivity of 

these materials has also been reported [197-199]. The disadvantages of these materials are their 

high thermal expansion coefficients and their chemical reactivity with CO2 from air at low 

operating temperatures (< 700°C) [198, 200]. 
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c) Ln2NiO4+  

The rare earth nickelates A2NiO4+  studied in the frame of this work ( A = La, Nd, Pr) 

correspond to the first term (n = 1) of the so called Ruddlesden-Popper series of general 

formulation An+1MnO3n+1 (with n = 1,2,3, …∞), where A is a cation of high ionic radius 

(lanthanide or alkaline earth) and M a transition metal (M = Co, Ni, Cu, …). n = ∞ corresponds 

to the perovskite structure.  

 Structural characteristics 

The structure A2MO4+  belonging to the structural model K2NiF4 can be simply 

described as a succession of perovskite-type MO6 octahedra layers, shifted relative to each 

other by a vector (½, ½, ½) so that they appear linked together by a NaCl-type AO sheets (Fig. 

I-31). In reality, the octahedra are not regular and the apical oxygen atoms (in the summit of 

the octahedron) are far from the equatorial plan (elongated octahedron), for example due to the 

Jahn-Teller effect. In these conditions, a more precise description of the structure consists in a 

succession of square MO2 plan sheets and A2O2 layers.   

 

 
Figure I-31: a) the A2MO4 tetragonal structure 

and b) the A2MO4 orthorhombic structure [187]. 

A-site cations are in red, M-site in green and 

oxygens in light blue. 

  

These materials, and more particularly the rare earth nickelates, present a tolerance or 

Goldschmidt factor close to the lower limit due to the small size of the rare earths and to the 

high ionic radius of the M
2+

 compared to the size of their respective sites. Thus, the A2O2 layer 

is in extension while the MO2 sheet is in compression compared to the ideal quadratic structure 
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(space group I4/mmm). To release these structural constraints, several solutions are taken by 

the compounds: 

i) The pleating of the MO2 plan, the octahedra tilting around the a axis and giving to 

the structure an orthorhombic symmetry (space group Bmab), Fig. I-31b.  

ii) The insertion of additional oxygen atoms in the A2O2 plans, leading to the 

elongation of the A-O bonds and thus to the release of the constraints. 

Simultaneously, the oxygen over-stoichiometry induces the partial oxidation of M
2+

 

in M
3+

 in the MO2 plans, which consequently decreases the constraints by releasing 

the MO2 plans contraction. This is the reason why the rare earth nickelates prepared 

in air are over-stoichiometric in oxygen and formulated A2NiO4+ , the over-

stoichiometry level  being directly linked to the radius of the rare earth involved. 

The rare earth nickelates are Mixed Electronic Ionic Conductors (MIECs), the 

electronic conductivity (relatively high at the working temperatures) being linked to the mixed 

M
2+

 / M
3+

 valence, whereas the ionic conductivity (high compared to most of the perovskite-

type cathode compounds) is induced by the oxygen diffusion through the interstitial and apical 

oxygen networks of the structure.  

It is worth noting that the structure of La2NiO4+  is orthorhombic of space group 

Fmmm, therefore in between the “ideal” structure I4/mmm and the orthorhombic Bmab 

adopted by Nd2NiO4+  and Pr2NiO4+ . For the two latter compounds, a crystallographic 

transition Bmab / I4/mmm occurs in air around 600-700°C, here illustrated in the case of 

Nd2NiO4+  (Fig. I-32).  

 
 

Figure I-32: Thermal evolution of a) the lattice parameters and b) the cell volume of Nd2NiO4+δ [187]. 
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However, the evolution of the volume of the lattice with the temperature is linear, including 

during the transition, indicating no thermomechanical constraints, also confirmed by the linear 

evolution of the thermal expansion coefficients of the materials.   

 Properties and performance 

 Total and ionic conductivities, diffusion coefficients and thermal expansion coefficients 

for selected A2MO4-type compounds are reported in Table I-3. 

 

Table I-3:  

Conductivities and oxygen diffusion coefficients (D*) at 700°C, and thermal expansion coefficients TEC) of 

selected A2MO4+δ oxides. 
 

Compounds tot 

(S cm
-1

) 
ionic 

(S cm
-1

) 

D* 

(10
-8

 cm² s
-1

) 

TEC 

(10
-6

 K
-1

) 
T (TEC) 

LaPrNi0.9Fe0.1O4+     13.4 [201] 300-1100K 

La2NiO4+  50 [202-204]  3.38 [203] 12.6 [205] 300-1275K 

La2Ni0.9Fe0.1O4+     12.8 [201] 300-1100K 

La2Ni0.9Co0.1O4+  47.3 [187]   10.5 [201] ND 

La2Ni0.98Fe0.02O4+  46.4 [201]   13.2 [201] 300-1100K 

La2Ni0.8Cu0.2O4-  52 [205]   13.9 [205] 300-1275K 

La2Ni0.8Co0.2O4+  72 [187] 7 × 10
-3

 [187] 2.2 [187]   

La2Ni0.88Fe0.02Cu0.1O4+  40 [201]   10.5 [201] 300-1100K 

La2Ni0.75Cu0.25O4+  50 [206]  3 [187]   

La2Ni0.6Cu0.4O4+  70 [205] 4 × 10
-3

 [187] 1.5 [187] 13 [205] 300-1275K 

La2Ni0.5Cu0.5O4+  35 [206] 7 × 10
-3

 [187] 2.2 [187] 12.8 [206] ND 

La2Ni0.4Cu0.6O4+  25 [205]  1.38 [203] 13.5 [205] 300-1275K 

La2Ni0.25Cu0.75O4+  25 [206]  1.8 [187] 12.7 [206] ND 

La2CuO4+  5 [205]   10.6 [205] 300-1275K 

La2CoO4+  5 (750°C) [205]  2.5 (500°C) [205]   

La2Cu0.9Co0.1O4+     13.3 [201] 300-1080K 

La2Cu0.98Co0.02O4+  15 [201]   12.2 [201] 470-1050K 

La2Cu0.7Co0.3O4+  3 [201]   12.6 [202] 300-1080K 

La1.9Sr0.1NiO4+    1 [203]   

La1.9Sr0.1Ni0.9Fe0.1O4+  63 [202]   12.7 [202] 300-1100K 

La1.9Sr0.1Ni0.98Fe0.02O4+  82.5 [202]   12.5 [202] 300-1100K 

La1.7Sr0.3NiO4+  90 [207]   11.3 [207] 300-1275K 

La1.6Sr0.4NiO4+     13.2 [207] 300-1275K 

La1.4Sr0.6NiO4+  100 [207]   11 [207] 300-1275K 

La1.4Sr0.6CoO4+  15 [207]   11 [207] ND 

La1.3Sr0.7CoO4+  65 [207]   9.6 [207] 300-1275K 

La1.2Sr0.8MnO4+  0.6 [208]     

LaSrNiO4+  135 [187]     

LaSrFeO4+  3.2 [209]     

LaSrCoO4+  135 [207]   14.3 [207] 300-1275K 

LaSrAlO4 5.4 × 10
-4

 [187] 
1.6 × 10

-2
 

[187] 
   

La0.9Sr1.1FeO4+  1.7 [207]   12.7 [207] 300-1275K 

La0.8Sr1.2Mn0.4O4+  3 [208]     

La0.8Sr1.2FeO4+  25 [207]     

La0.7Sr1.3FeO4+  19 [209]     
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Compounds tot 

(S cm
-1

) 
ionic 

(S cm
-1

) 

D* 

(10
-8

 cm² s
-1

) 

TEC 

(10
-6

 K
-1

) 
T (TEC) 

La0.6Sr1.4MnO4+  3.2 [208]   15.1 [208] 300-1075K 

La0.6Sr1.4FeO4+  19 [209]  1 [187]   

La0.5Sr1.5MnO4+  7 [187]  2.5 [187]   

La0.5Sr1.5Mn0.5Fe0.5O4+  0.4 [187]  3.2 [187]   

La0.5Sr1.5FeO4+  22 [209]  4.8 [187]   

La0.4Sr1.6MnO4+  2 [208]   14 [208] 300-1075K 

La0.2Sr1.8MnO4+  1.5 [208]   15.6 [208] 300-1075K 

NdSrCoO4+  61 [210]   15 [210] 300-1075K 

Nd2NiO4 27 [206] 
5.73 × 10

-3
 

[211] 
1.5 [211] 12.7 [206] 1173K 

Nd2CuO4+     10.1 [202] 300-1050K 

Nd1.9Ca0.1NiO4+  80 [187] 
1.6 × 10

-2
 

[187] 
3.5 [206]   

Nd1.95NiO4+  100 [206] 
1.6 × 10

-2
 

[187] 
5 [187]   

Nd1.90NiO4+  80 [206]  0.6 [206]   

Nd1.8Ca0.2NiO4+  80 [206]     

Nd1.2Sr0.8CoO4+  37 [210]   13.8 [210] 300-1075K 

Nd0.8Sr1.2CoO4+  123 [210]   15.8 [210] 300-1075K 

Pr2NiO4+  100 [206] 
2.6 × 10

-2
 

[187] 
5 [206] 13.6 [206] 1173K 

Pr2Ni0.9Fe0.1O4+  173 [212]   
16.66 

[212] 
970-1300K 

Pr2Ni0.8Cu0.2O4+  190 [212]   
13.24 

[212] 
300-1030K 

Pr2CuO4+  90   
10.21 

[202] 
300-1070K 

Pr1.7Sr0.3NiO4+  113.88 [211]   15.0 [211] 300-1275K 

Pr1.4Sr0.6NiO4+  94.87 [211]   14.9 [211] 300-1275K 

Pr1.4Sr0.6MnO4+  3.25 [211]   16.1 [211] 300-1275K 

Sr2MnO4+  0.3 [210]   16.5 [210] 300-1075K 

SrNdCoO4+  0.19 (600°C) [213]     

Sm1.4Sr0.6NiO4+  80 [211]   11.8 [211] 300-1275K 

 

La2NiO4+δ is the most widely studied compound among the nickelates [124-126]. 

However, this material reacts with YSZ, forming LaNiO3, NiO or the pyrochlore phase 

La2Zr2O7 [214]. Substituting the nickel by Fe or Cu did not improve substantially the 

conductivity level and the oxygen diffusion coefficients D* were found lower. Phases with 

neodymium, strontium, samarium or praseodymium on A-site have been investigated, with 

improved conductivity and oxygen diffusion coefficient noticed in the case of Pr. But it is 

known that phases based on praseodymium react strongly with the common YSZ electrolyte to 

form the insulating phase PrZrO3. Mixes Pr / Sr, La / Sr, Sm / Sr and La / Pr were also 

attempted, with an improvement of the conductivity in the phase LaPrNiO4+δ but a decrease of 

D* [201]. Substitution on B-site on the phase Pr2NiO4+δ with Fe and Cu improved significantly 

the total conductivity level [212], but in the case of substitution with iron the TEC is generally 
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too high. Poor performance is observed for the aluminates, the ferrites and the manganites, 

whereas promising properties are shown for the cobaltites [187]. Globally, the best 

performance is observed for the nickelates, with TEC matching with the state-of-the-art YSZ 

electrolyte. 

The phases with a sub-stoichiometry in rare earth developed at the Institut de la Chimie 

de la Matière Condensée de Bordeaux (ICMCB - CNRS) showed increased conductivities and 

high oxygen diffusion coefficients, and exhibited good electrochemical performance. For 

instance, changing A-site deficiency x from 0 to 0.05 in Nd2-xNiO4+δ increased the conductivity 

by a factor 3, as illustrated in Fig. I-33. This may be due to an increase of the electron hole 

concentration to compensate Nd - vacancies [215].  

 

 
 

 

 

Figure I-33: Thermal variation of the total conductivity for 

the compounds Nd2-xNiO4+  [187]. 

 

 Finally, the phases Nd2-xNiO4+δ have been reported to be stable under both anodic and 

cathodic polarisation, and are therefore also studied for high temperature electrolysis [216]. 

3.3.4 Interconnect materials 

 Among all the cell components, interconnect material requirements are the most 

demanding. The role of interconnects is not only to make the electrical (current) connection in 

between the cells stacking, but also to ensure the separation of the different gases in the stack 

and a uniform distribution of heat and fuels in the cell.  
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 Apart from cost and easy handling for mass-production requirements, interconnect 

materials must display [217-218]: 

- high electronic conductivity (1 S cm
-1

) with preferably no ionic contribution in SOFC 

operating environments, 

- chemical stability in both fuel and air, 

- thermal expansion coefficients comparable with the other cell components, 

- high mechanical strength (especially in the planar configuration), 

- fairly high thermal conductivity (5 W m
-1

 K
-1

), 

- chemical stability with the other components, 

- low gas permeability. 

 Two classes of materials fulfilling these requirements are considered: ceramics and 

metals (or metallic alloys). Since this work focuses only on electrolyte and electrode materials, 

interconnects will be here only briefly reviewed. For more details, readers are invited to refer 

to literature reviews [217, 219-220].  

a) Ceramic interconnects 

 Concerning ceramic interconnects, lanthanum chromite (LaCrO3) is currently the most 

common candidate material for SOFCs. Indeed, this material exhibits a relatively high p-type 

electronic conductivity in oxidising atmosphere and n-type in reducing atmosphere, and a quite 

good compatibility with the other cell components (chemical, microstructural and thermo-

mechanical).  

 In order to improve the electronic conductivity of LaCrO3, doping is performed on La-

site, Cr-site or both. The most common dopants for La-site are the alkaline metals Sr
2+

and / or 

Ca
2+

 and Mg
2+

 for Cr-site [7, 217-218, 221-223]. Co
2+

 [220, 224] added on B-site also 

increases significantly the electrical conductivity but also the TEC, while doping with Fe
2+

 

increases the electrical conductivity and lowers the TEC [217]. Some studies showed an 

improved ionic conductivity with Cu-doping [217] while Fu et al. showed a reduced value 

compared to the non-doped material [224]. Doping with Ni
2+

 on Cr-site has been shown in 

some studies to enhance drastically the electronic conductivity, with a transition to metallic 

conductor for the phase LaNiO3- However, a limitation exists due to a resulting lower stability 

[217, 225]. In opposition, Fergus reported only a small increase of the conductivity with 

Ni
2+

doping but with large improvement of the performance with co-doping, for instance with 
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Sr on A-site [220]. A good thermal expansion coefficient matching has been observed by Ding 

et al. by co-doping with both Ni and Co on La0.85Sr0.15Cr0.95Ni0.02Co0.02O3 [225]. More recently, 

Deng et al. showed that A-site excessive doping with Sm
3+

 enhances significantly the 

electronic conductivity while improving the sinterability of the samples [226]. 

 Indeed, a big issue related to lanthanum chromite interconnects concerns their poor 

sinterability due to the evaporation of Cr, increasing manufacturing complexity and costs [60, 

224, 227-228]. Thus, another role of the doping of lanthanum chromites is to improve their 

sinterability. V
5+

 [221, 227], Co
2+

 [221, 225, 227, 229], Ni
2+

 [225, 227], Cu
2+

 [225], Zn
2+

 [222, 

230-231], Al
2+

 [7, 221, 229], Ca
2+

 [230] and Ti
4+

 [221, 232] doping or co-doping have been 

extensively studied over the past decades, with generally improved sinterabilities (especially 

with V, Ti and Al-doping) while TEC is maintained at acceptable values. Phases with a Cr-

deficiency showed also improved sinterability [7, 223]. Finally, some studies revealed that A-

site doping with Ca
2+

 is beneficial for the densification of lanthanum chromites [7, 224-225]. 

 Despite all the attempts for improvement, several issues are still linked to the use of 

LaCrO3-based compounds as interconnect materials. The first one concerns the strong 

dependence of the electronic conductivity on oxygen partial pressure due to the formation of 

oxygen vacancies in reducing atmospheres [7]. The first consequence is a conductivity gradient 

across the interconnect material and an increase of the oxygen permeability in reducing gases, 

leading to the reduction of the fuel cell performance [217]. Additionally, the formation of 

oxygen vacancies in the anode atmosphere side leads to different thermal expansion 

behaviours. Associated to the low thermal conductivity (< 5 W m
-1

 K
-1

) giving thermal 

gradients within the cell stack, consequent internal stress is imposed to the material leading to 

warping and cracking of the material and thus failure of the stacks [228, 233]. Several studies 

related a diminution of this expansion by adding elements such as Al or Ti [234], but it is 

difficult to completely avoid this behaviour without losing properties of the materials such as 

electronic conductivity. 

 Other substitutions on A-site with Ba [220], Pr [235], Nd [235], Ce [235-236] and Nb 

[236] or Y [7, 237] on B-site have also been reported. 

 Finally, for most of the compounds, the electronic conductivity level remains too low at 

temperatures below 800°C in reducing atmospheres, making these materials not suitable for IT-

SOFCs [217]. 
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b) Metallic interconnects 

 Originally developed to overcome the difficulties encountered in the design of planar 

SOFCs, the metallic interconnectors are now the materials of reference for IT-SOFCs due to 

their electronic and thermal conductivities higher than the lanthanum /chromites, their low cost, 

easy manufacture and good workability. However, serious issues such as thermal expansion 

coefficient mismatch with the other cell components, oxidation in cathode atmosphere or high 

temperature corrosion are limiting their long term stability [7]. The particularity linked to the 

use of metallic interconnects is the problem of high temperature corrosion, involving the 

formation under fuel cell atmospheres of an oxide layer at the surface of the interconnect, 

named scale. In the case of high temperature alloys, this scale is providing corrosion / 

oxidation resistance to the interconnect [238]; however, it has to present sufficiently low 

growing rates to prevent huge dimensional changes and enough electrical conductivity. 

Alumina or silica-containing alloys are presenting extremely good oxidation resistance, with a 

really slow growing rate of the alumina scale. However, the very low electrical conductivity of 

both alumina and silica makes them unsuitable for current-collection purposes [219].  

 Chromium-based alloys are favoured as interconnect materials mainly because the 

Cr2O3-forming scale has comparatively low electrical resistivity level [217, 238]. Additives 

such as Y2O3, La2O3, CeO2, Fe2O3 or NiO are often used in the alloys to promote the electrical 

conductivity of the chromia scale. Concerning thermomechanical constraints, alloys as Cr-

0.4La2O3 or Cr-5Fe-1Y2O3 have been reported as having TEC comparable to YSZ [217, 219, 

238-239].  

 Problems of costs and fabrication difficulties of the chromium-based alloys made 

attractive the development of iron-chromium-based alloys, with Cr content usually ranking 

from 7 to 28 Wt% for commercially available products [219]. Ferritic steels are usually 

preferred because they present a body-centered cubic structure allowing a better TEC matching 

with the other components [238-240], and chromium content is usually set at a minimum of 17 

Wt% to make the Cr2O3 scale continuous [217, 219, 238]. Refractory elements such as Mo or 

W are usually added to decrease the value of TEC [219].  

 The high diffusivity of Cr leads to high growing rates of the Cr2O3 oxide layer. A 

compromise between high electrical conductivity and oxidation resistance should thus be 

found. To promote adherence of this oxide layer and oxidation resistance, commercially 

available Cr-based alloys inevitably contain reactive species, in the form of oxides or metals, as 

Y, Ce, La or Zr [217, 219, 239]. Silica and alumina are thermodynamically far more stable than 
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chromia, and are often added to increase oxidation resistance of the interconnect, but at 

quantities low enough (< 1 Wt%) to not form a continuous electrically insulating scale [219]. 

Nickel-chromium alloys are also studied for their improved oxidation resistance and their high 

mechanical strength; however, they generally present high TECs [238, 240]. 

 Another important weakness linked to the use of chromium in alloys is the high 

volatility of Cr under SOFC operating environments (typically at the cathode side), which is 

partly responsible for the rapid degradation of the SOFC cathode properties [217, 219, 241]. 

Mn or Ti can be added intending to form low electrically resistant protective spinel phases on 

the top of Cr2O3, expected to inhibit the formation of volatile Cr-species [217, 219]. Coatings 

with compounds as doped-LaCrO3 [219, 238, 241], (La,Sr)CoO3 [241], La(Ni,Fe)O3 [241], 

(La,Sr/Ca)MnO3 [219, 238, 241], (Y,Ca)MnO3 [241], CoCrO4 [238], (Mn,Co)3O4 [238], CeO2 

[241] or metallic layers [219] have also been reported to inhibit the Cr volatilisation, as well as 

to decrease the oxidation rate and improve the chemical compatibility with the cell 

components. 

3.4. Advantages and limitations of SOFC 

 For decades, experts have agreed that Solid Oxide Fuel Cells hold a great potential 

among fuel cell technologies. SOFCs are complete solid-state devices using an ionically 

conducting ceramic electrolyte. It is therefore simpler in concept than all the other fuel cells, as 

only solid and gas phases are involved. The electrolyte management issues arising with PAFC 

or MCFC do not occur with SOFCs, and their high working temperatures (800°C - 1000°C) 

allow an operation without the need of precious metal catalysts and either H2,CO or 

hydrocarbons as fuels [14]. Such temperatures are necessary to assure a sufficient ionic 

conductivity of the electrolyte, which has high activation energies (Ea) for the ionic transport 

(for example, for YSZ, Ea ~ 1 eV [242] compared to values around 0.1 eV for Nafion 

electrolytes in PEMFCs [243]). Furthermore, the high-temperature functioning allows the 

production of wasted heat, which can be transformed into electricity (co-generators, coupling 

gas turbines) [244]. The systems can thus reach efficiencies up to 85%.   

 The high working temperatures of the SOFCs are nonetheless presenting also 

drawbacks. There are thermal expansion mismatches among materials leading to 

thermomechanical constraints, and sealing is difficult in the flat plate configuration. The high 

operating temperature places severe constraints on material selection and results in difficult 

fabrication processes. Corrosion of metallic stack components (such as interconnects in some 
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designs) is also a challenge. These factors limit stack-level power density, thermal cycling and 

stack life. 

Decreasing the operating temperature of the SOFC technology would provide some 

technological and economical advantages: decrease of the constraints on materials, cost 

reduction (by using less costly metal alloys for interconnect and external components and 

cheaper fabrication methods) and improvement of lifetime of the stacks, through slowing down 

thermally-activated degradation processes of components such as corrosion of metallic 

interconnect. Thus, research efforts are made nowadays on decreasing the operating 

temperature of this technology typically down to 600 - 800°C; these kinds of fuel cells are 

called Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs).  

However, the decrease of the operating temperatures to the intermediate range sharply 

affects the performance of the cells [136, 234, 244]. Indeed, if the working temperature 

decreases, the ionic conductivity of the electrolyte decreases in an exponential way. 

Furthermore, this decline involves a fall of the kinetics of the redox reactions, and thus the 

decrease of the transfer of charged species (reduction of the electro-catalytic activity of the 

electrodes).  

 Also, as mentioned previously, SOFCs are attractive for their flexibility in the choice of 

the fuel and their reduced sensitivity to fuel contaminants (as for example H2S in natural gas or 

biogas). However, in the case of hydrocarbon fuels, the anode is vulnerable to deactivation by 

carbon coking, stemming from the cracking of methane (Eq. 5) or the Boudouard reaction (Eq. 

6). In addition, it has been shown that both the poisoning effect from contaminants and carbon 

coking are strongly dependant on the temperature ([245] and [246], respectively), thus being 

more significant in the intermediate temperature range.  

 

CH4 → C + 2H2 (5) 

2CO → C + CO2 (6) 

   

To compensate these losses, two solutions are proposed at the moment: 

- decrease the thickness of the electrolyte (< 15 μm), 

- find higher performing materials.  
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4. Motivation and aim of the present work 

 Major hurdles to the industrial deployment of the SOFC technology remain to date 

insufficient reliability and longevity and unacceptably high costs. Although the emerging IT-

SOFC technology should release some of the issues regarding SOFCs, the performance of the 

fuel cells based on classical ceramic materials (i.e. yttria stabilised zirconia (YSZ) as 

electrolyte, its corresponding cermet (Ni / YSZ) as anode and La1-xSrxMnO3 (LSM) as cathode) 

are sharply lowered at intermediate temperatures. In this case, the requirements on the cell 

materials are even more stringent due to the fact that the materials should show the same 

performance but at lower temperatures.  

Concerning the cathode side, mixed ionic electronic conducting materials (MIEC) have 

been shown as promising for operation at the intermediate temperature range. In this regard, a 

typical IT-SOFC cell involves the association of the standard YSZ electrolyte with LSCF 

cathode. However, thermomechanical constraints due to TEC mismatch first between YSZ and 

Ni (10.5 10
-6

 K
-1

 vs. ~17 10
-6

 K
-1

, respectively [247]) and between YSZ and LSCF (17.5 10
-6

 

K
-1

 [248]) could lead to problems as cracking or delamination during cell elaboration and 

thermal cycling. Also, a penalising chemical reactivity occurs between YSZ and LSCF, leading 

to the formation of an insulating SrZrO3 layer at the electrolyte / electrode interface. A barrier 

layer, generally made of GDC, is therefore often needed in between the two phases, increasing 

the cell elaboration complexity.   

  Due to its intrinsic properties, such as high ionic conductivity around 10
-2

 S cm
-1

 at 

700°C, and good chemical stability over a wide range of oxygen partial pressures and in CO2 

atmosphere [119-120, 125-126, 132, 249-254], the perovskite oxide BaIn0.3Ti0.7O2.85, labelled 

BIT07 (patent IMN-CNRS / EIFER-EDF n°0350807 from 2003), constitutes a potential 

alternative to YSZ to be used as an IT-SOFC electrolyte. In addition, in comparison with 

fluorite-structured YSZ, its cubic perovskite structure may offer an improved compatibility 

with the usual perovskite-structured (or derivates) cathode materials. For instance, a beneficial 

reactivity has been found between BIT07 and LSCF leading to the formation of a conducting 

perovskite-structured solid-solution; promising performance at button cell level have been 

obtained at intermediate temperature (700°C) for this cathode / electrolyte association [249], 

making BIT07 a promising material for application as IT-SOFC electrolyte.  

 Cathode materials that could be associated to BIT07 are the MIECs Ln2-xNiO4+  (Ln = 

La, Nd, Pr), labelled LnN, (patent ICMCB-CNRS / EIFER-EDF n° 0403036 from 2004), 
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presenting a crystal structure deriving from the perovskite structure, as a good thermal 

expansion matching is found with BIT07 (12.2 10
-6

 K
-1

 vs. 12.7 10
-6

 K
-1

 for BIT07 and LnN, 

respectively [126, 187]. Furthermore, this family of materials showed enhanced performance 

compared to the standard electrode material LSM [187, 207, 209, 255-260] as well as higher 

oxygen diffusivity compared to LSCF [204], and have been validated through French national 

projects (Semi-EHT (ANR2005), Tectonic (ANR2005), Condor (ANR2008), Armanasol 

(ADEME2004)) and international projects (RealSOFC FP6, SOFC600 FP6, METPROCELL 

JTI10).  

 The purpose of the present work is to investigate the potential of these alternative 

materials by coupling them in an anode-supported SOFC architecture which can operate at 

intermediate temperatures. The anode-support configuration has been selected for the expected 

higher performance compared to electrolyte-supported cells. Industrially well-established and 

low cost shaping techniques have been selected for their potential of easy up-scaling 

(especially for tape casting and screen printing), also giving high quality layers. The anode, a 

standard cermet Ni / BIT07, will be elaborated by tape casting; the BIT07 electrolyte layer by 

vacuum slip casting (VSC
®

) and the LnN cathodes by screen printing. Obtained cells will be 

electrochemically tested and the assemblies optimised for high performance at 700°C. This 

project takes place in a larger context in parallel to the French national project INNOSOFC 

(ANR2009) involving five partners: IMN, ICMCB, CEA, Marion Technologies and EIFER. 

 In this context, Chapter II will be devoted to the description of the shaping and 

characterisation techniques used in this project. Chapter III will present experimental processes 

for the elaboration of the cells as well as microstructural characterisations and Chapter IV will 

provide the results of the electrochemical tests performed on the assemblies. 
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Chapter II  

Shaping and characterisation techniques 

 

 
  

As already mentioned, the elaboration processes used in this study present the 

advantages of being easy, low cost, giving high quality layers (vacuum slip casting) and being 

industrially applicable (tape casting, screen printing). But even if their basic principles are in 

theory easy, in practice a large number of parameters have to be considered. It can be cited 

notably the raw powders, all the (organic) additives to be used, the sintering treatments or 

even the processes themselves. A wide variety of problems and defects can be encountered if 

not each parameter is well handled and controlled when manufacturing the cells. Each 

fabrication step and the required techniques entail specific difficulties and an appropriate 

knowledge of the process is needed to obtain an adequate final product with the required 

characteristics. 

 In this chapter, the techniques chosen are described: tape casting, vacuum slip casting 

and screen printing. The main difficulties and interrelated aspects inherent to each fabrication 

process in use are also approached. Finally, some examples of typical defects that can be 

found are also presented, the objective being to give the reader tools to understand the 

methods and the different challenges and implications exhibited by each technique.  

 Characterisations of the produced cells from the characteristics of the raw materials to 

the microstructures are also key features, first to validate and optimise the elaboration 

processes and second to estimate the quality of the final cells. Measurement of electrical and 

electrochemical performance is also mandatory to evaluate the feasibility of the produced 

assemblies. The second part of this chapter will be thus devoted to the description of the 

characterisation techniques involved in this work (powders, microstructural and 

electrochemical characterisations).  

 This chapter will serve as a basis for discussions in the following chapters. 
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1. Shaping techniques 

1.1. Tape casting 

1.1.1 Basic principle 

As already mentioned in Chapter I, tape casting is a fluid forming process for 

manufacturing thin sheets of any powder material. While in industry the casting is done by a 

moving polymer carrier film under a reservoir containing the slip (suspension of powder in a 

liquid), it involves in our case the spreading of the slip on a surface, the casting being done by 

the action of a moving doctor blade as illustrated in Fig. II-1.  

 

 
 

Figure II-1: Schematic of the tape casting process. 

 

The device used in this work is a ZAA 2300 automatic film applicator coater from 

Zehntner GmbH, Switzerland, shown in Fig. II-2. The tapes are casted on a removable glass 

plate of 553 mm × 300 mm × 15 mm, with a silicon-coated polyethylene film as a carrier. The 

stop and start positions for the tapes are individually adjustable, and drawing speed can be 

settled between 0 and 99 mm / s (adjustable in 1 mm / s step). The doctor blade is 200 mm 

width and allows gaps between 0 and 3000 µm.  

The arrangement and packing of the particles in the green tape determine the sintering 

behaviour and the final properties of the product. Thus, there is an interrelation between the 

slurry and the green tape and between the green tape and the sintered product. A uniform and 

homogeneous product can be obtained if the starting suspension has a high homogeneity and 

stability. Some organic additives are therefore necessary to assure the stability of the 

suspension (dispersants). Furthermore, to confer adequate strength and flexibility to the tape 

for its manipulation, binders and plasticisers are added. The slurry formulation is of crucial 

importance in the tape casting process and requires a careful selection and an accurate control 

on the processing additives. 

Tape

Drying

Doctor blade

Slurry
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Figure II-2: Picture of the ZAA 2300 automatic film applicator coater 

from Zehntner GmbH. 

 
 

1.1.2 Slurry preparation 

 In this section, a discussion about the different slurry components in terms of role and 

selection will be made, their role and their selection for the case of non-aqueous tape casting, 

i.e. using non-aqueous vehicle. 

a) The powders 

 In all the material fabrication processes, the powder is the main ingredient for a batch 

formulation. In many cases, powder characteristics is the aspect on which the operator can 

have a minimum control since they are selected ab-initio for providing specific properties. 

Essentially, the additives in the tape casting process are used to obtain and hold the powder 

particles together in order to produce a sintered layer with appropriate size, shape and 

properties and are burnt during the sintering step. Therefore, it is essential to well characterise 

the starting powders in terms of average particle size distribution, powder density, surface 

area and trace-impurity level.  

 Numerous studies concerning the particles, their shape and size and their effect on 

ceramic processing have been reported in the literature [41, 44]. All these aspects play a 

strong role on the final microstructure of the tape and have therefore to be considered 

carefully.  

 The surface area is the most significant factor in its interaction with organics such as 

dispersants or binders since the total powder area is proportional to the amount of organics to 

be added to provide the proper dispersion or binding quantities. Concerning the particle size, 

small particles have a high surface energy and thus a high driving force for sintering. This 

Glass plateSide frame

Doctor blade
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leads to higher shrinkage as well as the need of higher concentrations of additives, and 

therefore potential problems during drying, debinding (organic burnout) and sintering. The 

final microstructure depends also on the shape and size distribution of the particles since the 

packing structure is directly related to them [261]. However, small particles are needed to 

obtain a homogeneous and smooth surface in a thin tape. Particles with a wide range of sizes 

affect also strongly the homogenous sinterability of the tape by contributing to secondary 

grain growth. Furthermore, choice of the particle size is also related to the density of the 

powders. For example, high density powders may require the use of smaller particle size in 

order to keep the very heavy particles in suspension.  

b) The solvents 

 The tape casting process is a "fluid forming" process where the powder has to behave 

as a fluid. To achieve this degree of flowability and formability, the powder is suspended in a 

solvent. The solvent must dissolve the organic additives added to the slurry as binders, 

plasticisers, dispersants or others, without reacting chemically with the powders. Moreover, 

the solvent has to evaporate quickly: the drying speed is the determining factor in the casting 

speed and therefore in the production capacity. However, too fast drying leads to the 

formation of a skin on the top of the tape and can also induce cracking [41]. Thus, a very 

efficient solvent will be a balance between the two extremes.  

 Most of the publications report the use of multiple solvents in slurry formulations, 

with major interest in increasing their ability to dissolve. Other important advantages of using 

a mixture of solvents are a better control of the drying speed, of the rheological properties, of 

the costs and of the safety issues. In order to avoid differential volatilisation when dealing 

with mixtures of solvents, azeotropic mixtures are used. The azeotropes combine the 

dissolving capabilities of each solvent while evaporating as a single liquid [41].  

c) The dispersants 

 In the tape casting process, one of the most important steps is the dispersion milling 

procedure. The stability of a suspension depends on the sign and magnitude of the total 

energy of interaction between particles. As a result of high surface area, agglomerates and 

clusters are formed to decrease the solid-liquid surface area via interparticulate forces like van 

der Waals or hydrogen bonds. The agglomerates or clusters tend to trap air in the interstitial 

sites between particles that will cause trouble in deairing and form bubbles in the green tape. 

Furthermore, they cause inhomogeneities in the green tapes by introducing local high porosity 
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regions. When the polymeric binder is added, it will envelop the particle group instead of the 

individual particles, making the particle group permanent throughout the rest of the process 

[41].  

 A dispersant is an additive that works to keep particles apart, increasing the 

homogeneity of the slip / tape, and thus of the final product. The repulsion interaction can be 

provided by two general mechanisms: electrostatic repulsion, in which acids are adsorbed on 

the surface of the particles and are dissociated to leave a charge on the particle surface, and 

steric repulsion, in which a long-chain polymer is adsorbed onto the particle surface [262]. A 

third mechanism, referred as electrosteric stabilisation, is a combination of both steric and 

electrostatic repulsion. The stabilisation mechanisms are illustrated in Fig. II-3. 

 

 
 

Figure II-3: Methods of stabilisation of particle suspensions. 

 

 Another interest of the dispersant is to decrease the viscosity of the slurry, allowing 

higher solid-loadings or a decrease of the amount of solvents and therefore of the drying 

speed, the costs and the shrinkage. 

d) The binders 

 Typically, binders are precursors as monomers or emulsion of particles that become 

long-chain polymers during drying. Binders are probably the most important processing 

additives in the system because they supply the network that holds the entire chemical system 

together. For Mistler and Twiname [41], a green tape can be viewed as a polymer matrix that 

surrounds entrapped particles. A simile is presented by Moreno [263] in his laboratory report, 

describing the binding system as polymeric molecules adsorbed on the surface of the 

particles, forming organic bridges between them. There are much dispersions where the 

binder acts as a second dispersant and replaces some of it on the surface of the particles. The 

binder is the only continuous phase in the green tapes and provides properties as strength, 
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plasticity, toughness and flexibility. It must be chosen regarding its compatibility with the 

system, its solubility, viscosity, strength, cost, burnout temperature (with no residues) and 

glass transition temperature (Tg) [41, 263].  

 There are many types of binders used in ceramic processing such as the cellulose 

derivates, the polyvinyls and the polyacrylates. The main difference between them is the burn-

off characteristics. For each category of polymers, various chain lengths are available, 

characterised by the molecular weight. Lower molecular weight polymers have shorter 

lengths resulting in lower viscosities and therefore higher solid loadings, but in counterpart 

offering weaker tapes. 

e) The plasticisers 

 Plasticisers are added to the system to confer sufficient flexibility to the green tape for 

easy handling and storage. Plasticisers work either on or around the binder chains, allowing 

motion inside the tape matrix without breaking the matrix itself.  

Two distinctly different mechanisms can be used to plasticise a green tape: 

- Type I plasticisers, referred as Tg (glass transition temperature) modifiers or binder 

solvents [264], are chemicals that soften the polymer chains between the particles, allowing 

them to stretch more easily. They act either by shortening the polymer chain lengths or by 

partially dissolving them. Essentially, the only difference between the solvent and the type I 

plasticiser is the volatility [41], type I plasticiser being a slow-drying solvent. 

- Type II plasticisers act as lubricants in the ceramic matrix [41], avoiding frictions in 

between the polymer chains. They allow a better mobility between the particles, and decrease 

also the strength by getting between the polymer chains and thus decreasing the van der 

Waals bonding between adjacent chains [44]. Type II plasticisers can help to prevent cracking 

during the drying step, decrease the yield stress, can act as release agents (to allow easy 

removal from the substrate) and increase the strain to failure of the green bodies.  

 The most common plasticisers are phtalate (type I) and glycol (type II) derivates. 

 Relationships between binders and plasticisers are strong, so that the binder / 

plasticisers system is called “binder system”. The optimum flexibility is obtained when the 

correct binder / plasticiser(s) system is selected and the relative concentrations adjusted 

properly. 
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 Some other additives in the slurry formulations have been reported, as wetting agents 

(help the formation of a well defloculated suspension), homogenisers (as cyclohexanone) or 

antifoaming (mainly used when polymeric emulsions are used as binders) [263], and will not 

be described in this work. 

f) Materials processing 

 The order in which the organics are added to the mill is critical. As already mentioned, 

dispersing agent is usually added first to provide efficient deagglomeration process. Thus, the 

binder will not encapsulate agglomerates and competitive adsorption on the particle surface 

can be prevented. Also, the binder is generally more soluble in the plasticisers than in the 

solvents, so adding first the plasticisers will help its dissolution [41, 265].  

 The first step in the preparation of a slurry is thus the dispersion milling of the 

powder(s) in the presence of dispersant in the solvent(s). As said previously, the purpose of 

this step is to break down the agglomerates and to coat the particles with the dispersing agent 

to keep them apart. Several milling equipments can be used, as ball-mills or planetary mills. 

Usually, a predetermined amount of dispersant is solved in the solvent(s) by milling with a 

grinding media and the powders are then added. The dispersion milling time can vary from 4 

to 48 hours, depending on the "hardness" and the quantity of powder(s). The plasticisers are 

then added to help the dissolution process of the binder, followed by the binder itself. The 

slurry is mixed until the binder is completely solved.  

 Before casting, the air has to be removed from the slurry to avoid defects in the green 

tape (holes or spots). The most common technique for this process is to use a vacuum. 

1.1.3 Drying theory 

a) Introduction 

 In this section, important theoretical issues about the drying of casted tapes are 

presented. This discussion is mainly based on a book written by R. E. Mistler and E. R. 

Twiname, dedicated to tape casting, which gives a global overview of their experience on this 

elaboration process from fundamental aspects to experimental considerations [41].  

 With so many additives, and typically multiple solvents, the behaviour of the tape 

during drying can vary from slip to slip. In the tape casting process, the solvents are removed 

from a single side of the cast, due to the thin essentially two-dimensional shape and the 

impermeable carrier film on the bottom. The solvents take energy from the air and from the 
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rest of the tape to evaporate into the surrounding atmosphere at the surface of the tape. If 

evaporation occurs to expose the solid phase, a solid-liquid interface is replaced by a solid-

vapour interface. The exposure of the solid phase would lead to an increase in the energy of 

the system; to prevent this, liquids tend to spread from the bottom part of the tape to cover the 

solid-vapour interface [44]. It implies that all the solvents must migrate to the surface of the 

tape to evaporate. The two major mechanisms for drying a tape-cast layer are, thus, the 

surface evaporation and the solvent transport trough the thickness of the tape to the drying 

surface. The transport of the solvent(s) during drying can occur either by flow if a pressure 

gradient exists in the liquid or by diffusion if a concentration gradient exists [44]. The solvent 

transport is consisting of two stages: the first one is controlled by capillary migration of the 

solvent and the second one is controlled by solvent diffusion through the solid layer [44, 266], 

the latest being the rate determining factor of the drying.  

 Fig. II-4 shows a schematic illustration of the drying process.  

 

 
 

Figure II-4: Schematic illustration of the drying process [44]. 

 

Before evaporation starts, the surface is flat (Fig. II-4a). Then the liquid stretches to 

prevent exposure of the solid phase (Fig. II-4b) and capillary tension increases in liquid. The 
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solvent evaporates on the top surface, and the solvent inside the drying tape migrates to the 

surface by capillary action, process accompanied by the shrinkage of the tape (constant-rate 

period). When the surface gets critically dried (particles in contact with each other) and the 

solid phase stiffens, the migration of the vehicle to the top surface stops. The tension rises 

until the curvature radius equals the size of the pore (Fig. II-4c) and the liquid recedes into the 

matrix [267-268].  

Ideally, the solvent concentration should be the same throughout the thickness of the 

tape for a homogeneous drying. In practice, the drying conditions, tape structure, tape 

components, and solvent mixtures are balanced to get as close as possible to the ideal 

conditions. 

b) Drying rates 

 The rate of the surface evaporation is governed by the energy available for the 

solvents, the volatility of the solvent species and the vapour and saturation concentrations of 

the local atmosphere [41]. Different parameters can be settled to control the rate of the surface 

evaporation. The first one is the composition of the slurry itself, by using azeotropic mixtures 

of solvents. Raising the air temperature can also increase not only the evaporation rate, by 

giving an excess of energy for evaporation, but also the saturation concentration of the 

surrounding atmosphere. Many tape casting machines are equipped by an air heating system 

to speed the surface evaporation of the tape. Water vapour, and thus air humidity is also a part 

of the saturation concentration. Airflow plays a role since it allows to decrease the vapour 

concentration of the surrounding atmosphere and therefore to increase the speed.  

 However, the rate limiting factor in drying is the flow of the solvent(s) to the surface, 

and more particularly the diffusion through the solidified (surface) layer [266]. As concerns 

the diffusion of solvents, the rate is limited by the body itself, as the tape matrix is crowded 

by particles, binder, plasticisers, dispersant and the shrinkage of the tape occurring during 

drying limits the escape paths for the solvents. Large binder content fills the space between 

particles, limiting the diffusion rate. The particle size can be also considered, as small 

particles lead to better packing density and therefore slow diffusion [269-270].  

 To tend to an ideal case, the rates of diffusion and evaporation have to be as equal as 

possible. Since the surface evaporation rate is often much greater than the diffusion, 

inhomogeneities of the drying of the tape exist and, in the worst case, the formation of a 

"skin" (dry layer) on the surface of the tape is observed, while the solvent concentration does 
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not decrease substantially on the bottom part [41]. The skin formation remaining the most 

limiting factor of the diffusion through the matrix, precautions are often taken to slow the 

surface drying rate as much as possible, as adding skin retarders in the slurry formulation or 

placing containers of solvent in the drying chamber to saturate the local atmosphere. While 

effective, the last solution is problematic in terms of safety and fire concerns.  

c) Stress during shrinkage 

 Since the solvents occupy a large volume of the slurry, the dimensions and structure of 

the tape change during their evaporation. Motion in the tape matrix is thus unavoidable as the 

particles are then settled under gravity, making the polymer chains of the binder shrinking and 

re-orientating. In most cases, the drying shrinkage is unidirectional along the z-direction 

(thickness): the carrier does not shrink and the tape is held in the lateral directions on the 

carrier surface.  

 In the first drying stage (capillary migration), the viscosity of the fluid phase is low 

enough to allow particle rearrangement, avoiding internal stresses. But when evaporation 

proceeds, the viscosity increases as well as internal stresses [41]. As liquid evaporates, 

capillary forces push the particles to approach each other until a network is formed, retaining 

liquid in the pores that empty as the evaporation takes place [271]. The liquid in the pores 

stretches to cover the dry region, and a tension develops in the liquid. This tension is balanced 

by compressive stresses on the solid phase, which induces the shrinkage of the tape [44, 270]. 

In the case of a thick tape (typically upon 50 μm depending on the particle size [269-270]), 

the top surface is subject to lateral tensile stresses (not constrained to shrink along the z-

direction), the amount depending on factors such as solvent content or binder quantity, while 

the bottom part of the tape is bounded by the carrier. The top and bottom parts thus behave as 

different layers, leading sometimes to dramatic consequences on the quality of the green 

body. Some examples of defects in green bodies are presented hereafter. 

d) Some examples 

 The response of the tape to lateral shrinkage can take several forms, depending on the 

energy the matrix can store, the yield, the adhesion of the tape to the carrier or the particle to 

particle adhesion forces [41]. For instance, if the stress is higher than what can be 

accommodated by the tape by storage of energy and plastic deformation, it can be released in 

three ways:  
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- if the adhesion to the carrier is less than the particle to particle adhesion, the bottom 

part of the tape will disengage to the carrier (effect called "self-release") to allow the bottom 

part to shrink. 

- if both interparticulate and carrier adhesions are high, the tape curls. In this case, 

promoting plastic deformation by adding type II plasticiser, heating air to soften the polymer 

or slowing the surface evaporation rate can be solutions, but in most of the cases an 

appropriate conditioning of the green bodies allows their utilisation as-prepared.  

- if the adhesion to the carrier is higher, then we will observe the formation of cracks. 

As example of solutions, increasing the type I plasticiser content can increase the stored stress 

of the matrix, but greater effect would be obtained by increasing the plastic deformation by 

adding type II plasticiser or increasing the binder content to increase the interparticulate 

adhesion (as well as the plastic deformation and the stress storage). 

 The presence of defects in the tape, as agglomerates, air bubbles, streaks or furrows on 

metering also promote cracking since the cracks have the tendency to nucleate at non-

uniformities. Solutions as a proper slurry formulation, filtering before casting, or an 

appropriate de-airing step could decrease the number of defects, even if those are not 

completely avoidable. Increasing binder or type II plasticiser will also help the dissipation of 

the stress and thus the crack propagation. Fig. II-5 gives some examples of defects that can be 

observed in green tapes. 

The thickness of the layer plays also a role, since thick tapes need more time to dry 

(increased distance between the bottom and the top), therefore letting time to the polymer 

chains to shrink more before the tape gets solid. As a result, increased shrinkage and 

decreased particle mobility in the matrix (higher binder content needed to avoid lateral 

spreading after casting) increase lateral stress, resulting in the formation of cracks. If the 

bottom and the top layers dry at significantly different rates, effects as formation of wrinkles 

are observed. In this case, a skin is formed on the surface of the tape and solvent from the 

underlying slurry diffuses into the skin, making the polymer matrix of the skin layer swelling. 

The skin layer then wrinkles to provide additional surface area and accommodate matrix 

swelling. In this case, slowing the surface evaporation rate or decreasing the binder content 

would be solutions. 
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Figure II-5: Examples of observed curling or cracking 

behaviours of green tapes [41]. 

 

 The last example that will be discussed here is the formation of non-depth cracks on 

the surface (cracks do not go through the entire thickness of the tape), referred as "mud flat" 

cracking. This is a consequence of the two layers drying: the bottom layer is drying slower, 

giving a higher density in comparison with the "solvent-depleted" dried surface layer. The 

higher shrinkage of the bottom creates tensile stress in the top layer, inducing ripping of the 

top layer. It results in superficial cracks or, in some cases, non-visible phenomenon as slight 

surface variations. Addition of type II plasticiser in this case would often solve the problem, 

as plastic deformation provides a tensile stress release mechanism. 

1.2. Vacuum slip casting 

 For the production of thin electrolyte layers for planar SOFCs, a laboratory-made 

modified slip casting process has been used. It consists of a Plexiglas chamber, closed on the 

top by a stainless steel grid and connected to a vacuum pump (model V-700 from Büchi 

Labortechnik AG, Switzerland, ultimate vacuum < 10 mbar). The stainless steel grid serves as 

a support, and the samples are sealed at the edges by a silicon rubber. The tightness is ensured 

by closing the chamber with a Plexiglas cover fixed by a system of screws. A suspension 
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made of the ceramic powder, ethanol and a dispersant is applied on the samples, that are the 

planar and porous anode substrates, and the solvent is drawn through the pores. The vacuum 

accelerates the process flow. Remains then the layer of solid electrolyte particles, cast evenly 

on the surface [272]. Substrate sizes up to 150 × 150 mm can be used. The surface to be 

coated is adapted by changing the aperture size of the silicon rubber. The setup is shown in 

Fig. II-6. 

 

 
 

Figure II-6: Experimental setup for the vacuum slip casting process. 

 

Using this process shows some advantages: 

- easy and straightforward handling, 

- excellent quality of the produced layers, 

- reproducibility of the layer thickness, uniform thickness and structure, 

- 2 to 50 μm layers realisable, 

- little waste (the solvent can be re-used), 

- long-term stable suspensions can be produced without effort. 

The disadvantage of this process is the handling of large quantities of solvents and the 

limitation in the thickness of the layer. There is also a big influence of the structure of the 

substrate (surface topography, pore size, pore distribution…) on the quality of the layer. 
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1.3. Screen printing 

1.3.1 The screen printing process 

 In the screen printing process, a paste is laid on top of a permeable screen in front of a 

rubber squeegee. The squeegee is moved forward, deforming the screen downwards until it 

makes contact with the substrate. The paste is pushed along in front of the squeegee and 

through the screen pattern onto the substrate. The screen just touches the substrate at the tip of 

the squeegee. The composition is deposited onto the substrate as the screen peels out of it [51, 

273]. The process, illustrated in Fig. II-7, consists of the following steps: 

(i) pre-printing: the open mesh area of the stencil is covered by scraping the paste, 

(ii) real printing: the paste is squeezed through the mesh with the aid of a squeegee, 

generally in the opposite direction of the scraping movement, with a certain velocity, pressure 

and attack angle,  

(iii) post-printing: process when the sieve snaps off from the substrate. 

  

 
 
 

Figure II-7: Sketch of typical screen printing process [273]. 

1. Frame 
2. Squeegee 
3. Sieve (or stencil) 
4. Paste 
5. Substrate 
6.Mask (meshes covered with 
photopolymer to avoid the 
passage of the paste) 
7. Printed layer 
8. Normal stencil position 
A-B Adherence distance 

 attack angle 
 

 

In this work, screen printing has been performed with a XM semi-automatic screen 

printing device from EKRA (U.S), where the printing process is operated manually. This 

machine has been designed to print small series, in formats up to 450 × 450 mm. The pressure 

of the squeegee is adjustable and made using compressed air (P = 5 - 6 bar); samples are hold 

on the support using a vacuum. The device is shown in Fig. II-8. 
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Figure II-8: Picture of the XM semi-automatic 

screen printing device from EKRA. 

 

More than fifty variables are influencing the characteristics of the printed layers.  

Among them, we can cite:  

- the screen parameters: type of screen, type of material, force of tension, warp thread 

diameter, weft thread diameter, type of weave (plain, twill), mesh orientation, mesh opening 

(width) or thickness of the sieve are having a direct influence on the printed layer. The most 

obvious is the direct relation between the thickness of the sieve and the one of the printed 

layer (usually the thickness of the sintered layer is about 25% of the wet thickness depending 

on the solid content in the paste). Also, the setting of the main threads of the frame with a 

certain angle (to the frame) will affect the edge properties of the printout. The distance 

between the screen and the substrate is also of great importance: it has been found in literature 

that a too short distance delays the snap-off of the screen, resulting diametrically in the low 

film uniformity, whereas a too high gap will cause an incomplete release of the paste on the 

substrate [274].  

- the squeegee parameters: hardness, thickness, height, attack angle, force of pressure, 

velocity of movement or sharpness (profile / surface) are parameters to be considered. For 

example, a decrease in the hardness of the squeegee will increase the adherent distance, while 

too soft material causes deflection of the lower squeegee part, decreasing the attack angle 

[275]. Too low attack angles result in paste squeezing instead of scraping, while too high 

attack angle causes sliding of the squeegee. Low squeegee speed allows more time for the ink 

to flow, improving the print quality [275]. 
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 From these examples, it can be difficult to obtain good surface properties without a 

correct set-up of the equipment. Analogically, even with an optimum set of machine, it would 

be impossible to achieve high quality layer without a good paste rheology, as will be 

discussed hereafter. 

1.3.2 Paste formulation 

 The screen printing process uses a paste as a vehicle to transport metal and / or 

inorganic powders onto a substrate. As it is desirable for a paste to give and maintain a crisp 

printing outline without spreading, yield point and thixotropic behaviour are considered. Note 

that the yield point corresponds to the stress threshold from which pastes would flow; 

thixotropy is the property of some non-Newtonian fluids to show a time-dependent change in 

the viscosity: the longer the fluid undergoes shear stress, the lower is its viscosity. Thixotropic 

fluids also revive the previous structure (determined by viscosity) within certain period of 

time [276]. Such behaviour is caused by the creation of a three-dimensional network structure, 

usually governed by hydrogen or ionic bonds that can break easily during application of a 

shear.  

 From the rheological point of view, the paste should manifest shear thinning 

behaviour, here elastic or viscoelastic. The “plastic” term has been introduced by Eugen C. 

Bingham to describe the behaviour of dispersions having a yield point. In his model, bodies 

under low shear stress behave like solids, while the body starts to flow and behave like a fluid 

after the critical threshold is exceeded. Terms “Viscoelastic liquid”, “elasto-viscous liquid”, 

“Elastic liquid” or even “memory liquid” are synonyms, and describe a body which possesses 

viscoelastic properties. Those fluids have a certain amount of energy stored in the fluid as 

strain energy. Thus, it shows partial elastic recovery (thixotropy) after the deformation stress 

is removed.  

 There is a wide range of studies on rheological properties of liquids, but only few of 

them involve screen printing application. Typically, as for tape casting slurries, a printing 

paste consists of powders and solvents with a binder, playing also the role of dispersant. It can 

also contain moderators, antistatic agents, adhesion promoters or even agents preventing 

sieves from drying up. A variety of pastes can be prepared depending on the printing needs, 

the suitability of the paste being determined by viscosity measurements as a function of the 

shear rate [277-278]. The behaviour of printing pastes will have a direct impact on the quality 

of the screen-printed layer (uniformity of the thickness, surface smoothness…). Special 
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concerns have also to be made on the de-agglomeration and the stabilisation of the pastes to 

avoid defects such as small points on the surface or holes if the agglomerates are bigger than 

the size of the mesh (typically, the size of particles / agglomerates should not excess one third 

of the size of a single mesh’s orifice). Besides their direct influence on the viscosity of the 

paste, solid loadings have also to be adjusted properly: the solid-like behaviour of the paste is 

increasing with increased solid loadings, giving higher roughness of the layers [275]. 

Viscosities are also directly influencing the post-deposition flow that makes the films 

smoothen after printing.  

1.4. Debinding and sintering 

1.4.1 Debinding 

 The term binder removal or debinding refers to the removal of the binder and the other 

organic additives (plasticisers and dispersant) from the green body. By far, the most used 

method for debinding is the thermal decomposition, referred as thermal burnout or thermal 

debinding [279]. In this case, the organics are removed as vapour by heating, with emission of 

carbon and carbon monoxide, in our case in oxidising atmosphere (air) at ambient pressure.  

 The removal of the organics is physically controlled by heat transfer into the body and 

mass transport of the decomposition products out of the body. For a simple binder system, 

thermal debinding can be roughly divided into three steps: 

- initial heating of the binder until it softens (at Tg, around 100°C), 

- removal of the molten binder by evaporation (temperature range 200 - 400°C),  

- further removal of the binder remaining in the tape at temperatures above 400°C, 

removal facilitated by the porous nature of the body.  

 The evaporation takes place at the surface of the tape, and for high molecular weight 

polymers a decomposition step (by oxidation or thermal degradation) to form lower molecular 

weighted chains is needed before they can diffuse through the molten polymer and evaporate 

from the surface [279-280]. Note that the decomposition of the binder in green bodies is more 

complex than for the binder alone, with for instance effects of the powders or the atmosphere 

on the chemistry of the binder burnout [44]. 

 Practical binder systems consist of at least two components that differ in their 

volatility and decomposition behaviour. For an efficient debinding, the idea is to select 

materials that do not have a significant overlap in their removal temperature range: the 
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decomposition of the first component creates a porosity network, making easier the 

evaporation of the other component(s).  

1.4.2 Sintering 

 The heat treatment step in which the dried, debinded green body is converted into the 

useful coherent solid with the required microstructure is called sintering. Sintering is one of 

the most important processes for the fabrication of ceramic materials, the properties of 

ceramic materials being modified through sintering to give the product its final characteristics 

[271]. Thus, the microstructure of a powder compact changes continuously and drastically 

during sintering.  

 The driving force for densification is the change in free energy by the decrease in 

surface area and lowering of the surface free energy by the replacement of solid-vapour 

interfaces. This can be accomplished by atom diffusion processes that lead to either 

densification of the body (by transport of matter from inside the grains into the pores), or 

coarsening of the microstructure (by rearrangement of matter between different parts of the 

pore surface). This diffusion is caused by a gradient of chemical potential. Atoms move from 

an area of higher chemical potential to an area of lower chemical potential. The different 

paths taken by the atoms to get from one spot to another are the sintering mechanisms. The 

six common mechanisms are (see Fig. II-9): 

- surface diffusion: diffusion of atoms along the surface of a particle, 

- lattice diffusion (from the surface): atoms from surface diffuse through lattice, 

- vapour transport: evaporation of atoms that condense on a different surface, 

- grain boundary diffusion: atoms diffuse along grain boundary, 

- lattice diffusion (from the grain boundary): atoms from grain boundary diffuse 

through the lattice, 

- plastic flow: dislocation motion causes flow of matter. 

All of them lead to bonding and growth of necks between particles, increasing the 

strength of the body.  
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Figure II-9: Illustration of the six mechanisms that can contribute to sintering of a 

porous powder compact of crystalline particles [44]. 

  

 One must distinguish between densifying and non-densifying mechanisms. The three 

first mechanisms above are non-densifying: they take atoms from the surface and rearrange 

them onto another surface or part of the same surface. These mechanisms simply rearrange 

matter inside of the porosities and do not cause pores to shrink. The term coarsening is 

frequently used to describe this process in porous ceramics in which the increase of the 

average grain size (grain growth) is accompanied by an increase of the average pore size. 

Grain growth happens due to motion of atoms across a grain boundary. Convex surfaces have 

a higher chemical potential than concave surfaces and therefore grain boundaries will move 

toward their centre of curvature. As smaller particles tend to have higher radii of curvature, 

atoms tend to move to larger grains. This is a process called Ostwald ripening; large grains 

grow at the expense of small grains. The three last mechanisms are densifying mechanisms: 

atoms are moved from the bulk to the surface of the pores thereby eliminating porosity and 

increasing the density of the sample. 

 The sintering involves a competition between these two processes, but their relative 

influences can be balanced by the processing parameters for a control of the final 

microstructure.  
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 The domination of densifying diffusion processes will favour the production of a 

dense body, as required for the electrolyte, whereas coarsening diffusion processes favour 

highly porous microstructures, as required for the electrodes. Green bodies with large pores 

and small grains will lead to a porous microstructure, while higher temperatures or compact 

green bodies will promote the obtaining of a dense final product [44]. 

Other aids for densification can also be used, as applying an external pressure while 

heating or using an additive that will melt during the sintering, which will help the 

densification by promoting the packing arrangement and the Ostwald ripening (liquid phase 

sintering). 

2. Characterisation techniques 

2.1. Material characterisations 

2.1.1 X-Ray Powder Diffraction (XRPD) 

X-rays are electromagnetic radiations of exactly the same nature as light, but of very 

much shorter wavelength (typically 0.5 - 2.5 Å) [281]. When an X-ray beam hits an atom, the 

electrons around the atom start to oscillate with the same frequency as the incoming beam. In 

almost all directions, destructive interferences will be observed, that is, the combining waves 

are out of phase and there is no resultant energy leaving the sample. However, since the atoms 

in a crystal are arranged in a regular pattern, in very few directions we will have constructive 

interferences, in general when the wavelength of the wave motion is of the same order of 

magnitude as the repeat distance between scattering centres.  

The diffraction of monochromatic X-rays has been demonstrated to take place only at 

particular angles of incidence satisfying the Bragg law [281]: 

 

 (7) 

 

with  the reticular distance between 2 consecutive plans of the crystal network, h, k and l 

the Miller indices,  the wave length, the angle of the incident beam, and n the reflexion 

order. Note that the Miller indices are used to symbolically represent the orientation of 

reticular planes by giving the actual distances, measured from the origin, at which a plane 

intercepts the three crystallographic axes. The interplanar spacing dhkl is a function of both 
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plane indices h, k, l and the lattice constants (a, b, c, , , ). The exact relation between 

interparticular spacing and lattice parameters depends on the crystal system involved [281].  

Thus, qualitatively, the technique allows: 

- the determination of the crystallographic structure of a powder, 

- the detection of impurities, 

- the control of the crystallinity of a phase. 

Quantitatively, we can: 

- study the lattice parameters of a powder (a, b, c, , , ) by structure refinement, 

- find atomic positions and space groups, 

- evidence the presence of eventual structural disorder. 

An X-ray powder diffractometer consists of an X-ray source (usually an X-ray tube), a 

sample stage, a detector and a way to vary angle . The X-ray is focused on the sample at 

some angle . Once the radiation reaches the sample and is diffracted, the resulting signal is 

collected by a detector opposite to the source 2  away from the source path. The incident 

angle is then increased over time while the detector angle always remains 2  above the source 

path (see Fig. II-10 for a schematic of the basic principle). Obtained XRPD diagram gives the 

intensities of the diffracted beam as a function of the 2  angle. In absolute units, intensities 

are measured in ergs / cm² / sec but this measurement is a difficult one and is seldom carried 

out; most X-ray intensity measurements are made on a relative basis in arbitrary units.  

 

 

Figure II-10: Schematic of the principle of X-ray Diffraction. 
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The limit of detection of this technique is not a fixed parameter but depends on a 

number of variables. Crystalline samples with strong texture are difficult to assess since the 

preferred orientation of a large number of grains decreases the probability of finding planes 

oriented in other directions. The quality of the sample is also an important factor. For 

powders, the particle size strongly influences the process, smaller grains giving rise to broad 

peaks. Empirically, it can be said that in general in the case of samples with adequate 

preparation and favourable crystal orientations the limit of detection of a phase is around 4 - 

5%. 

Our measurements have been performed at room temperature using a diffractometer 

model D8 series 2 from Bruker Corporation, with 2  varying between 10 and 100°. 

The identification of crystalline phases in the samples has been done by a standard 

search / match procedure using the software DIFFRACplus EVA. Structural refinements have 

been performed based on the Rietveld method using the software TOPAS 4.  

2.1.2 Laser granulometry 

Relevant and reproducible particle size data are essential in many areas of 

manufacturing industry, and laser diffraction is a widely used technique. Laser diffraction, 

alternatively referred to as Low Angle Laser Light Scattering (LALLS), is a non-destructive 

technique used for the analysis of wet or dry samples, with particles in the size range 0.02 to 

2000 µm [282]. Laser diffraction-based particle size analysis relies on the fact that particles 

passing through a laser beam will scatter light with angles inversely proportional to their size.  

The first element of a typical laser granulometer is the laser, the most common being 

the He-Ne gas laser of wavelength 0.63 µm, to provide a source of coherent, intense light of 

fixed wavelength [44]. Note that the wavelength of light used for the measurements plays an 

important role in the measure, with for example smaller wavelengths (e.g. blue light sources) 

providing improved sensitivity to sub-micron particles.  

The particles are suspended in a solvent that is routed and circulated by the action of a 

pump, in ethanol, to ensure that the material under test passes through the laser beam as a 

homogeneous stream of particles in a known and reproducible state of dispersion. The laser 

beam passing through the measurement chamber is deflected by the particles, at angles and 

intensities depending on the particle size. Indeed, as particle size decreases, the observed 

scattering angle increases logarithmically. Thus, large particles scatter light at narrow angles 

with higher intensity whereas small particles scatter at wider angles but with lower intensity. 
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A series of detectors (usually a slice of photosensitive silicon with a number of discrete 

detectors [283]) measures the light pattern produced over a wide range of angles. The working 

principle of the technique is illustrated in Fig. II-11.  

 

 

Figure II-11: Working principle of the laser diffraction particle sizing [284]. 

 

The analysis is performed simultaneously on all the particles flowing through the laser 

beam. Response analysis is obtained in the form of a histogram. Another important parameter 

representing the characteristics of the particles of a powder is the Median diameter or Medium 

value of particle diameter, d50, which is the particle diameter value in case the cumulative 

distribution percentage reaches 50%. For instance, a d50 having a value of x µm means that 

50% of the particles have a diameter below x µm (using a volume based calculation). 

Similarly, d10 and d90 means that 10 and 90% of the particles have a diameter below x µm, 

respectively. 

Particles are three-dimensional objects for which three parameters (length, breadth and 

height) are required in order to provide a complete description. However, most sizing 

techniques, including laser granulometry, assume that the material being measured is 

spherical, as a sphere is the only shape that can be described by a single number (its 

diameter). This equivalent sphere approximation is useful in that it simplifies the way particle 

size distributions are represented. However, it does mean that different sizing techniques can 

produce different results when measuring non-spherical particles, and data have thus to be 

considered carefully. As an illustration, Fig. II-12 shows some of the different possible 

answers for a single grain of sand. Other techniques to be mentioned are sieve, sedimentation, 

electrical sensing zone and microscopy; for more details please refer to [44, 283]. 
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Figure II-12: Equivalent sphere representation for an irregularly shaped particle [283]. 

 

In laser diffraction, particle size distributions are calculated by comparing a sample’s 

scattering pattern with an appropriate optical model. Traditionally, two different models are 

used: the Fraunhofer Approximation and the Mie Theory. The Fraunhofer approximation was 

used in early diffraction instruments. It assumes that the particles being measured are 

spherical, opaque and scatter light at narrow angles. As a result, it is only applicable to large 

particles and will give an incorrect assessment of the fine particle fraction, giving errors as 

high as 30% [283]. Mie Theory however provides a more rigorous solution for the calculation 

of particle size distributions from light scattering data, assuming the volume of a particle as 

opposed to the Fraunhofer theory [282-283]. It predicts scattering intensities for all particles, 

small or large, transparent or opaque. Mie Theory allows, for primary scattering from the 

surface of a particle, the prediction of the intensity by the refractive index difference between 

the particle and the dispersion medium. It also predicts the secondary scattering caused by 

light refraction within the particle, especially important for particles below 50 µm in diameter.  

Measurements have been performed at the ICMCB using a laser diffractometer from 

Malvern Instruments Ltd. Prior to measurements, powders were accurately dispersed in 

ethanol by manual mixing in a mortar and kept in ultrasounds 15 to 30 min to break down the 

last agglomerates. 

2.1.3 Thermogravimetric analyses (TGA) 

 Thermogravimetric analysis or TGA is an analytical quantitative technique commonly 

employed in research and testing to assess volatile content, thermal stability, absorbed 

moisture, degradation characteristics, sintering behaviour and reaction kinetics of materials by 
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monitoring the weight change that occurs as a specimen is heated. The measurement is 

usually carried out in air or in inert atmospheres like argon or helium and the weight is 

recorded as a function of the increasing temperature. A continuous graph of mass change 

against temperature is obtained when a substance is heated at a uniform rate or kept at 

constant temperature. TG curves are normally plotted with the mass change ( m) expressed 

as a percentage on the vertical axis and temperature (T) or time (t) on the horizontal axis 

[285]. 

 The instrument used in thermogravimetry (TG) is called a thermobalance. It consists 

of several basic components: 

- a micro-balance: this high-precision balance is equipped with a pan (generally 

platinum or alumina), loaded with the sample. The most widely used balances are the null 

types, which incorporate a sensing element detecting a deviation of the balance beam from its 

null position [286]. The balance is deflected as the sample weight changes as a result of 

temperature change and the consequent movement of the pan is sensed. The output from the 

movement sensor applies a correction (often magnetic) that brings the balance pan back into 

its original position. The restoring force triggered to bring the balance back to the null 

position is directly proportional to the mass change. This procedure ensures that, as the weight 

of the sample changes, the pan is kept in the same position in the furnace and, thus, in the 

same thermal environment. The sensitivities and ranges of the microbalances depend on the 

model chosen, but typically the sensitivity is ± l μg with a maximum sample mass of 100 mg 

[285].  

- a furnace and a temperature controller: the furnace should have a hot zone of uniform 

temperature, large enough to accommodate the sample and crucible. It is essential that the 

furnace in no way affects the microbalance mechanism [285]. 

- a data recording unit.  

 A basic illustration of a thermobalance is shown in Fig. II-13.  

The first limitation of the TGA technique arises from the fact that the mass change 

characteristics of a material are strongly dependent on the experimental conditions employed. 

Thus, the recorded data are influenced by experimental parameters, such as sample 

dimensions, form and mass, heating / cooling rates, the nature and composition of the 

atmosphere in the region of the sample and the thermal and mechanical history of the sample. 
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Also, frequent calibration of the thermobalance is mandatory to guaranty the accuracy of the 

measures.  

 

 

 
 

Figure II-13: Basic schematic of a typical balance and furnace assembly. 
  

TGA measurements have been performed at the IMN using a thermobalance model 

TGS2 from Perkin-Elmer Corporation, from room temperature to 800°C, with heating and 

cooling rates of 2°C / min. 

2.2. Microstructural characterisations by SEM / EDX 

 The scanning electron microscope (SEM) allows three-dimensional representations of 

an object contained in a two-dimensional image, with a wide range of possible 

magnifications. There are many advantages in using the SEM, including a large depth of field, 

which allows a large amount of the sample to be in focus at one time, the production of 

images of high magnification and resolution (around 2 nm) and a sample preparation 

relatively easy since SEM only requires the sample to be conductive. All the advantages have 

made the SEM one of the most used instruments in research areas today.  

 SEM uses electrons rather than light to form an image. The incident electrons interact 

with the atoms of a sample and are significantly scattered by them. When an incoming 

electron is sufficiently energetic, a wealth of phenomena can take place leading to different 

types of emitted particles. In SEM imaging, the emitted particles of interest are the secondary 

and the backscattered electrons, corresponding to the two strongest regions of the energy 

distribution of the electrons leaving an irradiated sample [287].  

 By convention, the secondary electrons (SE) are defined as being the ones emitted 

with energies less than 50 eV [288]. They are coming from the inelastic scattering of the 

incoming electrons with matter: the incident electrons interact with the orbital electrons of the 
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atoms in the specimen, exciting an electron in the sample and losing some of its energy in the 

process, while the trajectory of the incident electron is only slightly perturbed. After 

interacting with the matter, the excited electron moves towards the surface of the sample, 

undergoing elastic and inelastic collisions until it reaches the surface where it can escape if it 

still has sufficient energy. Although electrons are generated throughout the region excited by 

the incident beam, only the electrons that originate from less than approximately 100 nm deep 

in the sample can escape to be detected as secondary electrons [289]. Secondary electrons are 

thus very sensitive to topography.  

 Backscattered electrons (BSE) are coming from the elastic scattering of the electron 

beam. In elastic scattering, the electron trajectory changes, but its kinetic energy and velocity 

remain essentially constant (due to large differences between the mass of the electron and 

nucleus). The pronounced forward scattering of those reflected electrons results in the 

formation of shadows, making them sensitive to relief contrast. Also, if the specimen to be 

observed is relatively smooth, the material contrast can be highlighted, as the number of 

emitted backscattered electrons rises with the atomic number of the atom; heavier elements 

appear thus brighter [290].  

 

 
 

Figure II-14: Scanning electron microscope overview [291]. 
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In practice, a SEM consists of an electron optical column (see Fig. II-15), linked to a 

control console. Within the column are an electron gun, electromagnetic lenses that accelerate 

and focus the electron beam, and deflection foils [287]. The electron beam is usually 

produced by field emission, a technique based on the quantum mechanical tunnel effect 

(discharge of electrons from the surface of a cathode material subjected to a strong electric 

field). At the base of the column are a specimen chamber, specimen stage and detector 

systems. The electron optical column with the specimen chamber has to be evacuated to at 

least 10
-8

 Pa, both to achieve long enough mean free pathways for the electrons and to prevent 

surface contamination of the electron gun [287]. 

Note that the use of the SEM is also not limited to imaging, but additionally it is 

possible to use the multiple interactions that electrons may have with matter to perform 

different types of analyses, such as topographic analysis or composition analysis at element 

level [287]. In the panel of emitted particles, one can mention the Auger electrons, used in so 

called Auger Electron Spectroscopy (AES), the photoelectrons, used in X-rays Photoelectron 

Spectroscopy (XPS), and continuum X-rays, used in Energy Dispersive X-ray Spectroscopy 

(EDX or EDS).  

The Energy Dispersive X-rays analysis (EDX) is a method that can be easily applied 

in conjunction with the SEM for microanalysis. In this technique, a solid state detector 

converts the emitted X-rays to electrical pulses whose heights are proportional to their energy, 

thus allowing quantitative analyses. These pulses are amplified, providing after some counting 

time the energy spectrum of the characteristic X-rays of all elements present in the area hit by 

the electron beam [287].  

 This technique has advantages such as a high efficiency of detection, which allows 

simultaneous detection of all the elements of a material. In addition, as it can work in 

combination with the SEM, it allows the realisation of linear analyses and composition maps. 

However, this technique owns some detection limits, summarised below [287]: 

- Only elements of atomic number Z ≥ 9 can be resolved, the relaxation process for 

lighter elements producing Auger electrons rather than X-rays. 

- The detection limit of an element of atomic number Z ≥ 9 homogeneously dispersed in 

a material is 0.1%. Therefore, for the characterisation of certain materials such as alloys that 

have elements with lower percentages, other analysis techniques should be used. 



Chapter II: Shaping and characterisation techniques 
 

 

83 

 It should be taken into account that this is a semi-quantitative analysis technique. 

Factors such as background noise of the signal, absorption coefficient of the material or the 

depth of penetration of the electron beam can cause some variations in the signal, thus 

percentages (atomic or weight) obtained for each element have to be taken carefully.  

 In this work, two different scanning electron microscopes have been used:  

-  Zeiss Supra 55 VP, with resolution of 1.7 nm at 1 kV, 2 nm at 30 kV, incorporating 

equipment for energy dispersive X-ray (EDX) analysis, brand EDAX. 

- Zeiss Evo 60, incorporating equipment for energy dispersive X-ray (EDX) brand 

EDAX. 

Analyses on images (as quantification of porosity, see Chapter III) have been 

performed using the software dhs-Bilddatenbank
®
 from Dietermann & Heuser Solution 

GmbH. 

2.3. Electrochemical characterisations 

2.3.1 Cell testing 

Such measurements have been performed in EIFER using the test bench shown in Fig. 

II-15. The cell is sealed between two alumina tubes using Thermiculite
®

 gaskets in the cell 

housing, located in a vertical oven. The compression is made by a weight system. The upper 

compartment of the cell housing is dedicated to the anode and the lower part to the cathode. 

The gas flows are controlled using Mass Flow Controllers (MFCs) and transported to the cell 

through inner alumina tubes, as shown in Fig. II-16. In both sides, current collection is made 

by platinum grids of diameter Ø 16 mm, meaning an active surface of 2 cm
2
, linked to the 

connectors by platinum wires. The pressure of the Pt grids on the cell is controlled by a 

system of springs. Both output gas lines (air and hydrogen) are equipped by condensers. 

Temperature is monitored using three thermocouples, one in each compartment and one in the 

oven. The electrochemical interface is a SOLARTRON 1286 from Schlumberger, the 

hardware control and data acquisition are realised using a DaisyLab interface and the 

electrochemical measurements carried out with the software CorrWare
®
.  
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Figure II-15: Picture of the test bench used in this study. 

 
 

 
 

Figure II-16: Schematic illustration of the cell housing. 

 

2.3.2 Electrochemical impedance spectroscopy (EIS) 

In contrast to current voltage (I - V) characteristics, only giving a view of the overall 

losses of a cell, the technique of Electrochemical Impedance Spectroscopy (EIS) is one of the 

most effective methods for the unravelling of complex electrochemical systems [292]. The 

strength of EIS lies in the fact that by small signal perturbation, relaxation times and 
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amplitudes of the various processes of a system can be revealed over a wide range of 

frequencies. EIS is especially useful if the system performance is governed by a number of 

coupled processes, proceeding at different rates. The physical and chemical processes 

contributing to the internal resistance of a cell determine their dynamic behaviour over a wide 

range of frequencies: the various polarisations exhibit different time dependences, due to the 

different origins of the kinetic processes involved [292-293]. For instance, the response time 

for ohmic polarisation is essentially zero, for activation polarisation the time constant is 

related to details in the charge transfer process and the concentration polarisation is related to 

the relevant gas phase transport parameters such as diffusivity [293]. 

The method of EIS consists in superimposing a small sinusoidal current perturbation 

of variable frequency  around a stationary point of the polarisation curve (Fig. II-17). 

 

 

 

Figure II-17: Principle of the electrochemical impedance spectroscopy. 

 

The response of the electrochemical system is a sinusoidal potential  and the 

ratio  defines the impedance of the material. 
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 is a complex number that can be represented either by polar coordinates using its 

module  and its phase  or in cartesian coordinates by 

, with  the real part and  the imaginary part. Impedance is generally 

represented in the complex plane of Nyquist .  

In first and very simplified approximation, an impedance spectrum can be interpreted 

in terms of “semi-circles” and electrical equivalent circuits made of capacitances, inductances 

and resistances, placed in parallel or in series. These three dipoles are represented in Fig. II-

18. 

 

 

Figure II-18: Symbols and Nyquist representations for a) a resistance R, b) a capacitor C and c) an inductor L. 

   

In an ideal case, the plots are a series of semi-circles, quarter-circles or distorted semi-

circles and quarter-circles. The intercepts with the real axis are measures of resistive losses 

due to various physical processes, and positions on the arcs provide information on non-

ohmic terms. For example, in the case of a monocrystalline material, the electrical behaviour 

can be modelled by a circuit with a resistance and a capacitance in parallel (Fig. II-19a). The 

impedance of such a circuit can be written as follows:  

 

                              
                                                                       

(9) 

 

with  the time constant. This corresponds to the equation of a half-circle (Fig. II-

21b); the intersection at low frequencies ) of the half-circle with the real axis is 

the total resistance of the system. The value of the capacity is determined with the maximum 

value of the frequency on the imaginary axis by the relation .  is defined 

as the relaxation pulsation and is a characteristic of a given circuit, as for the relaxation 

frequency . 
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Figure II-19: For a monocrystal, a) equivalent circuit modelling the electrical 

behaviour of the material and b) theoretical impedance diagram. 

 

Another element often found in electrochemistry is the Constant Phase Element or 

CPE. This element is defined by two parameters:  an admittance, noted , and an exponent n. 

 is a pure imaginary element representing a capacity when n gets close to 1 and an 

inductance if n is negative. The impedance of this element is mathematically described by the 

following relation:  

 

 (10) 

 

The exponent n is linked to the decentering  of the circle arc by:  

 

 (11) 

 

The Nyquist representation of a CPE and the equivalent circuit R // CPE are shown in 

Fig. II-20a and II-20b, respectively. Also, the particular case n = 0.5 corresponds to the 

Warburg element, used to describe pure diffusion processes. 

Equivalent circuits are used to model the impedance spectra, allowing some insight 

into the nature of the time constants involved in a process, although simple circuits made of R 

and R-C elements are rarely describing it accurately. 

R

C

- Im [Z( )]

Re [Z( )]

0∞

0

R

a) b)



Chapter II: Shaping and characterisation techniques 
 

 

88 

 

 

Figure II-20: a) symbol and Nyquist representation of a CPE for n = 0, 0.5 and 1 and b) symbol 

and Nyquist representation for the equivalent circuit R // CPE. 

 

An additional difficulty in the comprehension of phenomena rises from the fact that 

different equivalent circuits can be used to describe an impedance spectrum, related to 

different physical phenomenon. Finally, experimental limits in separating relevant parameters 

are related to the overlapping of semi-circles, making the interpretation of spectra not 

straightforward.  

EIS measurements on complete cells have been performed using a SOLARTRON SI 

1255 HF Frequency Response Analyser (FRA) and the program Zplot
®
. The frequency range 

used was 50 kHz - 0.05 Hz (0.005 Hz), 7 points per decade, in galvanostatic mode. AC 

current modulation amplitudes were determined in order to be small enough to meet the 

linearity requirements of the transfer function, which reflects the relationship between the 

voltage and the current at different frequencies, but high enough to have a good signal / noise 

ratio [253, 294]. 
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Chapter III  

Fabrication and characterisation of cells 

 

 

 

In the previous chapter, shaping and characterisation techniques used in this work have 

been described in terms of basic principle and difficulties and / or limitations.  

 Regarding the shaping techniques, the major concern is related to the tape casting 

process, since the quality of the final cell will be mainly governed by the mechanical and 

structural properties of the anode substrate. Although tape casting is a well-established 

industrial shaping technique, known for its easy handling and low cost, important upstream 

work has to be done for the development of a slurry formulation giving high quality tapes in a 

reproducible way. Thus, a proper selection of the raw powder characteristics (particle size, 

particle morphologies etc.) and the organic additives to be used is necessary. Besides, an 

accurate determination of the adequate relative proportions of the different components and 

additives appears mandatory.  

Also, in order to avoid any mechanical stress and defects during the sintering steps of the 

cell elaboration, the thermal behaviour of each layer has to be studied and the heat treatment 

processes to be optimised.  

In this chapter, the different optimisations performed at each processing step will be 

described, leading to the definition of a protocol for the elaboration of complete planar anode-

supported cells. Thereby, a first part will concern the tape casting process, and more generally 

the fabrication of the anode substrate. The second part will present the vacuum slip casting 

process used for the elaboration of half-cells and the third part will describe the screen printing 

of the cathode layers. Finally, the fourth part of this chapter will be devoted to the attempts 

made during this work for microstructural improvements.  
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1. Fabrication of the anode substrate by tape casting and pre-sintering 

1.1. Slurry formulation  

1.1.1 Powder characteristics 

The BIT07 powder has been produced by EMPA (Dübendorf, Switzerland) by solid 

state reaction. It appeared phase pure in the sense of X-rays, as can be seen in Fig. III-1. 

Rietveld refinement of the diffraction pattern in the space group Pm3m gave a lattice parameter 

a = 4.097 Å, in agreement with the value previously obtained by Jayaraman et al. at the IMN 

for BIT07 produced at lab scale (4.095 Å), also by solid state reaction [119]. 

 

 
 

Figure III-1: Powder X-Ray Diffraction pattern for the BIT07 powder supplied by EMPA. 

 

Particle size distribution of the BIT07 powder has been determined using laser 

granulometry measurements; the volumetric particle size distribution pattern is shown in Fig. 

III-2a. This powder presents a bimodal size distribution, with a d50 value of 0.84 µm and a d90 

one of 2.84 µm. SEM analyses of the powder, shown in Fig. III-3a, confirmed the grain size.  

The NiO powder has been supplied by J.T. Baker
®
 (U.S.A), a supplier selected on the 

basis of a study performed by Tietz et al. at Forschungszentrum Jülich, comparing NiO 

commercial powders from different suppliers [295]. The volumetric particle size distribution 

pattern is shown in Fig. III-2b, the measured d50 and d90 values being 0.19 and 0.67 µm, 

respectively. These values were also confirmed by SEM, micrograph shown in Fig. III-3b.  
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Figure III-3: SEM micrographs of a) BIT07 and b) NiO powders. 

 

The tapes were prepared with a BIT07 / NiO weight ratio of 40 : 60, the high nickel 

content chosen to ensure a good path for electrons flux and thus a good current collection 

[265]. 

1.1.2 Components in the slurry 

 For the slurry formulation, the following additives have been selected on the basis of 

the work of Schafbauer et al. at Forschungzentrum Jülich [265, 296]: 

-  Dispersant: Nuosperse
®
 FX-9086 (Elementis), a methoxy methylethylacetate (Fig. III-

4), showed the best dispersing activity regarding our powders (tests between Oleic Acid, 

Nuosperse
®
 FX-9086, ethylcellulose, polyethyleneimine and Dolapix). It is a non-ionic 

1 µm

a b

1 µm

 
 

Figure III-2: Particle size distributions of the BIT07 powder from EMPA (left) and the NiO from J.T. Baker
®
 (right). 
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surfactant adsorbed physically on the surface of the particles by weak van der Waals forces, 

providing steric stabilisation [44].  

 

 
 

Figure III-4: Lewis 

representation of the 2 - methoxy 

- 1 - methyl ethyl acetate. 

 

- Binder: for tape casting in organic solvents, the most frequently used polymer is the 

polyvinylbutyral (PVB) thanks to its flexibility (chain lengths from a few thousands g / mol to 

10
5
 g / mol available) and adaptability to many solvents and plasticiser systems [263, 297-298]. 

PVB is industrially produced from vinyl acetate and butyraldehyde, and is in practice a 

combination of vinylbutyral, vinyl alcohol and vinyl acetate monomers, as shown in Fig. III-5 

[263]. In our case, the PVB Butvar
®
 B-98 (Sigma) with a molecular weight of 40 - 70 kg / mol 

was selected.  

 

 
 

 

Figure III-5: Lewis representation of the monomers present in the PVB. 

 

- Solvents: PVB and ethanol have similar molecular polarities, making ethanol a 

solvent of choice to be used with this binder. Also, 2-Butanone (methyl ethyl ketone, or MEK) 

is a fast drying solvent commonly used in tape casting. The mixture ethanol / MEK has been 

reported to be azeotropic for ethanol contents starting from 34 Wt% [299]; thus, a solvent 

system ethanol / MEK 34 : 66 Wt% has been selected for this study. 

- Plasticiser I: in organic tape casting, phthalate plasticisers are commonly used and 

reported as being compatible with PVB binders. However, due to their toxicity (to environment 
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and humans), efforts were made in the last years to avoid the use of phthalates in industrial 

processes, expected to be included in the “dangerous substances” or “substances to be avoided” 

industry chemical lists [265, 300]. Since a few years, Solutia Inc. is releasing a phthalate-free 

type I plasticiser, the Solusolv
®
 S-2075. This triethylene glycol di-2-ethylhexanoate (Fig. III-6) 

presents the advantages of being environmentally “friendly” and compatible with PVB binders 

[297, 300]. Comparative studies using benzyl butyl phthalate (98%, Aldrich), bis (2-

ethylhexyl) phthalate and Solusolv
®
 S-2075 plasticisers have been performed with different 

formulations using our powders, giving comparable qualities of the green tapes. Therefore, 

Solusolv
®
 S-2075 has been preferred. 

 

 
 

Figure III-6: Lewis representation of the triethylene glycol di - 2 

- ethylhexanoate. 

 

- Plasticiser II: poly (ethylene glycols) or PEGs are commonly used plasticisers in 

slurry formulations [263, 298, 301], being molecules chemically inert but compatible with 

PVB binders. The Lewis representation of a PEG molecule can be seen in Fig. III-7. Relatively 

low molecular weight PEG400 (Merck) has been here selected, considering that plasticisers 

with low molecular weight and small number of polar groups provide higher plasticisation and 

flexibility to the tapes [298]. 

 

 
 

Figure III-7: Lewis 

representation of the PEG. 
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1.1.3 Slurry elaboration process 

 As previously mentioned in Chapter II, the order for adding the organics to the mill is 

critical [41]. Dispersing agent is added first to provide efficient de-agglomeration process, thus 

i) the binder will not encapsulate agglomerates and ii) the competitive adsorption on the 

particle surfaces is prevented. Note that usually the binder is more soluble in the plasticisers 

than in the solvents, so adding first plasticisers will help its dissolution. Taking these elements 

into account, the slurry elaboration process has been settled involving four steps:  

(i) dispersion milling of the BIT07 and NiO powders in the presence of the dispersant and 

the solvents during 24 hours;  

(ii) addition of the type I plasticiser, mixing during 1 hour;  

(iii) addition of the binder, mixing until complete dissolution (usually 1 hour);  

(iv) addition of the type II plasticiser, mixing during 1 hour.  

All the mixing steps have been performed using a Turbula
®
 shaker-mixer type T2F (W.A.B 

GmbH) with zirconia balls Ø5 mm as a grinding media. The slurry was then let to rest for 48 

hours to allow the expansion of binder polymer chains. 

1.2. Casting 

 Prior to casting, air is removed in a desiccator using a vacuum pump (500 mbars for 15 

min) to prevent defects in the green tape caused by remaining air bubbles (holes or spots can be 

nuclei for the creation of cracks). A doctor blade gap of 1500 µm has been used and the casting 

speed controlled to 21 mm s
-1

, speed selected on the basis of the work of Delahaye et al. [126]. 

The tapes are dried in ambient air under aspiration during 12 hours.  

1.2.1 Primary recipe 

a) Dispersion of the powders 

 The first parameter to be optimised in a slurry formulation is the dispersion of the 

particles. For this purpose, different amounts of dispersant ranking from 0 to 10% relative to 

the solid amount have been added to a suspension of  BIT07 / NiO 40 : 60 Wt% powders in the 

MEK / Ethanol 66 : 34 Vol% solvent mixture. Suspensions containing 0, 0.5, 1, 1.5, 2 and 10% 

of dispersant have been mixed in a Turbula
®
 for 4 hours and let to sediment during 12 hours. 

As expected, the suspension without any dispersant started to sediment right after stopping the 

shaking. After 1 hour of sedimentation (Fig. III-8), it was observed that the suspensions 
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containing 0.5 and 10 Wt% of dispersant were already sedimentating, while the suspensions 

containing 1, 1.5 and 2 Wt% remained stable.  

 

 
 

Figure III-8: Behaviour of a BIT07 / NiO 40 : 60 Wt% in a MEK/Ethanol suspension as a 

function of dispersant content and time. 

 

In the case of a too low amount of dispersant (here 0.5 Wt%), the powders are not 

efficiently dispersed and re-agglomeration processes can occur, leading to an increase of the 

“particle” size and thus a higher sedimentation rate (though a delay was observed before the 

sedimentation started for a content of 0.5 Wt% in comparison with the suspension with no 

dispersant).  

 In the case of an important excess of dispersant (here 10%), a demixing of the BIT07 

and NiO powders was observed. This could be explained by a higher affinity of the 

Nuosperse
®
 with NiO than with BIT07. In this case, the excess of dispersant is adsorbed 

preferentially by the NiO particles, making the dispersion layer collapsing as illustrated in Fig. 

III-9. 
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Figure III-9: Influence of the amount of dispersant on the 

stabilisation of particles [302]. 

   

 After 12 hours of sedimentation (Fig. III-8), a green supernatant was observed for the 

suspension containing 0.5 Wt% of dispersant, indicating a better dispersion of the NiO 

compared to BIT07. As concerns the two extreme configurations (no dispersant versus 10 

Wt%), for the system without Nuosperse
®
 the supernatant is green (though lighter than with 

0.5 Wt%), while for the system with a large excess of additive the supernatant is transparent. 

This indicates that the excess of dispersant does not only hinders its effect but also inhibits the 

dispersing action of the solvent system itself by preventing the formation of an electrostatic 

double layer around each particle, normally stabilising suspensions in the case of polar liquids. 

The dispersion containing 1 Wt% of Nuosperse
®
 was the most homogeneous; a white / 

transparent supernatant is observed for contents of 1.5 and 2 Wt%, as explained previously by 

an excess of dispersant adsorbed preferentially by the NiO particles. Thus, an amount of 1 

Wt% of dispersant was selected for the formulations.  

b) The other additives 

 Once the proper amount of dispersant to be added is determined, the second parameter 

to consider is the solid loading, defined as the volumetric ratio of solids (here the BIT07 and 

NiO powders) to solids plus solvents. The amount of solvents was thereby empirically 

determined to give to the final slurry a sufficient viscosity without (excessive) spreading during 

casting. In our case, a solid loading of 34% has been selected. The amount of binder (relative to 

the solid amount) has been settled to 3.5 Wt% based on the empirical results obtained with 

BaTiO3 powders. The ratio binder : plasticiser I (Solusolv
®
 S-2075) has been fixed to 2 : 1 

following the instructions of the supplier [297]; the ratio binder : plasticiser II (PEG400) was 

also taken as 2 : 1. This slurry formulation is summarised in Table III-1. 
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Table III-1:  

Slurry formulation for the production of BIT07 / NiO 40 : 60 Wt% substrates with 3.5 Wt% of binder. 
 

material Wt% / solid amount Wt% Vol% slurry 
Vol% green 

tape 

NiO 60.00 45.70 17.21 38.84 

BIT07 40.00 30.47 12.71 28.68 

Ethyl Alcohol 7.92 6.03 
55.69  

Methyl Ethyl Ketone 15.37 11.71 

Dispersant (Nuosperse® FX-9086) 1.00 0.76 1.89 4.25 

Binder (Butvar
®
 B-98) 3.50 2.67 6.09 13.74 

Plasticiser I (Solusolv
®
 S-2075) 1.75 1.33 3.46 7.80 

Plasticiser II (PEG400) 1.75 1.33 2.96 6.69 

 

c) Drying conditions 

 As said previously, the tapes are dried in air under aspiration. For this purpose, the tape 

caster is located in a Plexiglas chamber with a chimney on which an aspirating arm is 

positioned. The strength of the aspiration is here believed to have an important impact on the 

drying behaviour of the tapes due to its direct influence on the surface evaporation rate. For the 

optimisation of the drying conditions, 3 slurries from the previous recipe were dried at 3 

aspiration levels, from low to high aspiration.  

 As presented in Fig. III-10, waves (wrinkles) appeared when fixing a too high 

aspiration level (Fig. III-10c), although this effect was already observed for the middle-high 

aspiration level even if less visible (Fig. III-10b).  

 

 
 

Figure III-10: Influence of the aspiration level on the drying behaviour of the tapes with a) low aspiration,  

b) medium aspiration and c) high aspiration. 

   

This suggests a too fast evaporation of the solvents at the surface. This defect can be 

explained by the difference of drying speed between the bottom and the top layers. A solvent 

depleted zone forms at the top surface of the tape, which “freezes” into shape and size while 

the bottom of the tape is not dry. The solvents from the underlying layer diffuse to the top 

a b c
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surface at a rate too slow to “re-dissolve” the skin. As solvents migrate to the surface, the 

polymer matrix in the skin swells, leading to the wrinkling of the surface to provide additional 

surface area and accommodate the swelling [41].  

A crack-free tape has been obtained in the case of a low aspiration (Fig. III-10a). 

This aspiration level has therefore been selected and kept constant along the thesis for 

comparison purpose. However, a problem of reproducibility has been encountered regarding 

this formulation. Attempts to further modify the drying behaviour of the tapes by modifying 

the ethanol : MEK ratio of the azeotropic mixture to 50 : 50, thus increasing the proportion of 

ethanol to decrease the surface evaporation rate, led to the same problem of reproducibility, as 

illustrated in Fig. III-11 for tapes cast the same day. This might also be linked to the drying 

conditions: while in industrial tape casting machines the temperature of the air flow in the 

drying chamber is well controlled, in our case small temperature and humidity level variations 

in the laboratory atmosphere could play a role. This indicates however that improvements in 

the slurry formulation are needed. 

 

 
 

Figure III-11: Drying behaviour of green tapes BIT07 / NiO (40 : 60 Wt%) from 

identical slurries with solvent ratio 50 : 50 Wt%. 

 

Maintaining the binder content at 3.5 Wt% while increasing type II plasticiser content 

to increase the plastic deformation or type I plasticiser content to increase the stored stress in 

the polymer matrix were not effective enough to avoid cracks. The problem of cracks seemed 

thus to stem from a too weak inter-particulate adhesion. This conclusion led to the formulation 

of slurries with increased binder content.  
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1.2.2 Optimisation of the formulation 

a) Binder content 

 To increase the inter-particulate adhesion, plastic deformation and stress storage, 

formulations with increased binder content have been prepared. In all the formulations, the 

binder : plasticiser weight ratio has been kept to 2 : 1, and the solid loading decreased to 30% 

for slurries containing 5 and 6 Wt% of PVB to compensate for the important increase of the 

viscosity.  

As can be seen in Fig. III-12, for slurries containing 4 Wt% and 5 Wt% of PVB, 

cracked tapes were obtained.  

 

 
 

Figure III-12: Drying behaviour of green tapes BIT07 / NiO (40 : 60 Wt%) as a function 

of binder content. 

 

Concerning the tape containing 5 Wt% of binder, an additional defect observed was a 

slight edge curling. This defect is often observed in tape casting of thick tapes when the carrier 

polyethylene film is not mechanically restrained. In this case, the higher shrinkage of the top 

layer compared to the bottom one is compensated by a lifting of the edges, lighter because 

PVB 6 Wt%

PVB 4 Wt% PVB 5 Wt%

PVB 8 Wt%

16 cm 17 cm

15 cm 20 cm
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thinner. It can also be seen as an indication of an increased inter-particulate adhesion compared 

to the tape with 4 Wt% of PVB, at least high enough to lift the edges of the tape and the 

polymer carrier film as a stress-release mechanism. 

For a binder content of 6 Wt%, a crack-free tape has been obtained. However, reverse 

curling of the tape is observed: as for the formation of wrinkles, a solvent-depleted zone forms 

on the top surface of the tape, forming a gel “frozen” in shape and size, while the bottom layer 

shrinks further due to a longer time for the polymer chains to re-organise, forcing the tape 

edges to curl downwards. This effect is here believed to be greater for larger binder contents, 

and thus plasticisers content, due to a corresponding increase in tight packing. This slows down 

the diffusion of the solvents and thereby creates a larger gradient of drying speed through the 

thickness of the tape. Nevertheless, even if not optimal, reverse curling is often tolerated in the 

industry since the flatness of the green tape can be recovered with a proper conditioning.  

Nonetheless, problems of reproducibility have also been encountered in the case of a 

binder content of 6 Wt%. A further increase of the binder content to 8 Wt% gave also crack-

free tapes, but problems of warping during de-binding of the substrates were experienced. Note 

that in this case the reverse curling effect is greater, confirming the strong influence of the 

organic content on the solvent diffusion rate.  

b) Plasticisers content 

From the previous series of experiments, solid loading, optimum dispersing agent and 

binder contents as well as drying conditions have been determined. However, problems of 

reproducibility led to a need in further modifications of the binder system, involving an 

increase of the plasticisers content to improve both plastic deformation and stress storage in the 

tapes. 

Considering these last results and the recipe used at the IMN [126, 181, 303], a new 

slurry formulation has been developed on the basis of a binder content of 6 Wt%. A slightly 

higher binder : plasticisers ratio compared to the recipe of the IMN has been used in our study.  

The type I plasticiser (Solusolv
®
 S-2075) content has been increased compared to 

the recipe of the IMN, due to both a decreased effectiveness of this plasticiser with PVB 

binders compared to the phthalates (observed in our case by a better flexibility of the tapes 

prepared with phthalate-based slurries of equivalent formulations) and the increased length of 

the binder polymer chains used for our slurries (Butvar
®
 B-98 vs. a mixture of Butvar

®
 B-98 

and B-90 for the IMN). Note that Solusolv
®
 S-2075 has been kept because of its non-toxicity 
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and non-corrosivity compared to the phthalates, with no prejudicial difference in terms of tape 

quality evidenced in this study. 

Lower type II plasticiser content has been selected, the tapes containing the same 

amount as the IMN appearing “oily” after drying.  

The new recipe is presented in the Table III-2. 

 

Table III-2:  

Slurry formulation for the production of BIT07 / NiO 40 : 60 Wt% anode substrates. 
 

material Wt% / solid amount Wt% Vol% slurry 
Vol% green 

tape 

NiO 60 41.32 13.37 29.22 

BIT07 40 25.55 9.88 21.58 

Ethyl Alcohol 9.9 6.8 
54.24  

Methyl Ethyl Ketone 19.3 13.3 

Dispersant (Nuosperse
®
 FX-9086) 1 0.7 1.46 3.2 

Binder (Butvar
®
 B-98) 6 4.1 8.11 17.72 

Plasticiser I (Solusolv
®
 S-2075) 5.5 3.4 7.68 16.78 

Plasticiser II (PEG400) 4.5 2.8 5.26 11.50 
 

 

This new recipe gave good quality and reproducible green tapes (Fig. III-13a), despite 

slight wrinkling and reverse curling on the edges (Fig. III-13b).  

 

 
 

Figure III-13: Green tape BIT07 (EMPA) / NiO 40 : 60 Wt% out of the new recipe with a) full 

tape and b) zoom on the edges. 

 

These physical phenomena could be attributed to the larger amount of additives, 

slowing the migration of the solvents to the surface. Decreasing the amount of additives could 

be a solution to minimise these effects; thus, formulations containing 5, 4 and 3 Wt% of binder 

have been prepared, keeping the ratio Solusolv
®
 : PVB and PEG400 : PVB constant. 

a b

15 cm
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As can be seen in Fig. III-14, the obtained green tapes were all cracked with a binder 

content lower than 6 Wt%, their quality increasing with the binder content. Especially, in the 

case of a slurry containing 3 Wt% of binder, a complete demixing of the tape during drying 

was observed (Fig. III-14). 

 

 
 

Figure III-14: Drying behaviour of green tapes BIT07 / NiO (40 : 60 Wt%) as a function 

of binder content, with increased plasticisers content. 
  

  

A decrease in the binder content could not be done without directly impacting the 

quality of the tapes, even if being effective to solve the problem of wrinkling. Slurry 

formulations involving 6 Wt% of binder are thus further validated. Since the wrinkling 

concerns only the edges of the tapes, not used to prepare cells (see Fig. III-15), this defect has 

been neglected.  

Finally, the difference of thicknesses between the tapes from the old recipe and this one 

has to be noticed. Indeed, the previous tapes were around 630 µm thick (300 µm in the edges), 

compared to an average of 540 µm in this case. It can be explained first by the lower solid 

18 cm

19 cm

15 cm18 cm

6 Wt% PVB 5 Wt% PVB

3 Wt% PVB
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loadings and second by the lower drying speed of the tapes from the new recipe, which lets 

time to the polymer chains to reorganise, thus occupying less volume. A remark concerns here 

the secondary effect of the increased plasticisers content: besides slowing the migration of 

solvents to the surface by increasing tight packing, the type I plasticiser is a “binder solvent”, 

thus similar to the solvent vehicle. This “binder solvent” is however much less volatile, and by 

remaining stable in the drying tape (the flash point of the Solusolv
®
 S-2075 being 216°C) it 

allows even more motion and reorganisation of the polymer chains during drying. 

An additional comment here concerns the non-homogeneity in the thickness of the tapes 

(thicknesses vary between 450 µm and 540 µm in the middle and beginning of the tape, and 

between 380 µm and 420 µm on the edges, the lowest thickness corresponding to the end of the 

tape). This effect, although normally observed in the tape casting industry due to some 

spreading of the slurries [41], could be an issue for the casting of homogeneous electrolyte 

layers in our case due to the relatively small size of the tapes. The thickness inhomogeneities 

might be reduced by using a reservoir for the slurry instead of pouring it manually on the front 

of the doctor blade. Casting larger tapes could also enable a decrease of these gaps by allowing 

less spreading in the border (slurries using the complete width of the doctor blade) and increase 

the relative proportion of the “middle” part of the tape.  

The doctor blade gap has been increased from 1500 µm to 1750 µm to obtain workable 

thicknesses, giving comparable quality and crack-free tapes with dry thicknesses around 650 

µm. 

1.3. Pre-sintering 

 Apart from the de-binding, the pre-sintering step consists in heating the substrate to an 

intermediate shrinkage, which has to be high enough to ensure the mechanical strength needed 

for the vacuum slip casting process, but letting enough remaining porosity to facilitate the 

solvent migration. Also, additional shrinkage of the substrate during the sintering step of the 

electrolyte, performed at higher temperature, is believed to help its densification as well as to 

reduce thermal stresses by allowing the substrates to shrink along with the electrolyte layer.  

The useful area of the tapes, i.e. the area where all the samples have been cut, is 

illustrated in Fig. III-15. 
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Figure III-15: Schematic illustration 

of the area of the green tapes where the 

substrates have been cut. 

 

The thermal behaviour of the substrates during binder burnout has been characterised 

by TGA measurements, shown in Fig. III-16.  

 

 
 

Figure III-16: Typical TGA measurement for a green tape BIT07 / NiO. 

 

From the TGA results, three different phases can be identified. The first one from room 

temperature to 100°C corresponds to the dehydration of the tape and the evaporation of the last 

leftovers of solvents. The two other phases can be identified in between 100 and 400°C and 

correspond to the binder and plasticisers removal (lighter organics leaving the tape first). All 

the organics seem to be evacuated at around 400°C. First sintering programs involved heating 

and cooling rates controlled at 1°C / min, to prevent blistering or cracking caused by exiting 

gases during binder removal as well as to let enough time to the substrates to accommodate the 
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stresses occurring during sintering. All the obtained substrates remained flat (except for one 

sintering temperature as will be discussed hereafter) and crack free, so the heating and cooling 

rates have been kept at 1°C / min along this work 

 The optimal size for the pre-sintered substrates is empirically determined to be 10 to 

15% larger than the expected size of the final cell; the pre-sintering program has thus to be 

selected accordingly. For this purpose, different temperatures (1100°C - 1250°C) and dwellings 

(6h - 9h) have been tested, taking into account a sintering temperature of 1350°C and a 

dwelling time of 9 hours for the densification of the electrolyte, optimised on the basis of the 

work of M. Letilly at IMN [303]. The shrinkages for the different sintering programs and the 

available additional shrinkage during the final sintering step to reach the final size of the half-

cells are presented in Table III-3.  

 

Table III-3:  

Shrinkages after pre-sintering and shrinkages to the final size as a function of the sintering program for half-cells 

BIT07 / NiO 40 : 60 Wt% | BIT07. 

 

As can be seen from this table, three pre-sintering programs (1200°C / 6h, 1150°C / 9h 

and 1150°C / 6h) are giving tapes in the required size range, i.e. 10 to 15% larger than the final 

product. However, pre-sintering at 1200°C led to substrates not completely flat, thus breaking 

during the vacuum slip casting process. For pre-sintering at 1150°C, comparable quality of 

half-cells was obtained for both dwelling times; pre-sintering at 1100°C for 6 hours gave half-

cells with comparable quality, but a lower mechanical strength of the pre-sintered substrates 

was noticed and led to handling difficulties regarding the casting of the electrolyte.  

 A pre-sintering program at 1150°C for 6 hours was thus selected.  

 

(Pre-)sintering temperature / 

dwelling time 
Shrinkage Shrinkage to the final size 

1350°C / 9h 18.0% - 

1250°C / 6h 13.0% 5.5% 

1200°C / 12h 11.5% 7.3% 

1200°C / 6h 9.3% 10.0% 

1150°C / 9h 7.4% 12.2% 

1150°C / 6h 6.0% 14.1% 

1100°C / 6h 3.5% 17.0% 
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2. Deposition of electrolyte layer by vacuum slip casting and co-sintering 

 The produced green tapes were cut into 4 × 4 cm² pieces and pre-sintered at 1150°C 

during 6 hours. For the vacuum slip casting process, a suspension of electrolyte particles is 

prepared by ball-milling during 100 hours the BIT07 powder in ethanol with polyethylene 

imine (50 Wt% solution in water, Aldrich) as dispersant and Ø3 mm and Ø5 mm zirconia balls 

as a grinding media. The suspension is left to sediment for 6 hours, and the upper part is taken 

for casting, letting the biggest particles which have sediment faster in the bottle. The average 

particle size after milling and sedimentation is about 0.5 μm with a broad repartition of the size 

of the grains (Fig. III-17), believed to improve the packing density of the green layer and 

thereby the density of the sintered product.  

 

 
 

Figure III-17: SEM micrograph of the BIT07 powder after 

ball-milling during 100 hours. 

  

The concentration of the suspension has been calculated by the determination of the 

difference of weight of a sample of the suspension before and after evaporation of the solvent; 

the given value is an average made from five samples. The concentration was thereby 

determined to be around 9g / L, with a deviation around 6%. After this grinding step, XRD 

measurements on the BIT07 powder showed the apparition of barium carbonate due to the 

presence of water during the ball-milling step, as can be seen in Fig. III-18. However, BaCO3 

decomposes at around 900°C i.e. will disappear during the sintering step of the half-cell.  

 

500 nm
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Figure III-18: X-Ray Powder Diffraction patterns for the BIT07 powder supplied 

by EMPA as received and after ball-milling during 100 hours. 

 

The targeted thickness for the electrolyte is 10 μm, which corresponds to a volume of 

suspension of 4.7 mL, calculated from Eq. 12 for a green size of the electrolyte of 3 × 3 cm² 

and a final size of 2.64 × 2.64 cm². 

 

 

(12) 

 

The suspension is poured on the surface of the sealed pre-sintered substrate and a 

pressure of typically 700 mbar is applied until complete aspiration of the solvent. The samples 

are then let to dry for 12 hours prior to sintering. Fig. III-19 gives an illustration of the samples 

at the different elaboration steps, from the green tape to the sintered half-cell. 

 

 
 

Figure III-19: Pictures of the half-cells produced with a) cut green tape, b) pre-sintered anode substrate, c) after 

vacuum slip casting of the BIT07 electrolyte layer and d) after final sintering. 
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 Cross-section SEM characterisations on half-cells after sintering at 1350°C for 9 hours 

outlined thin (around 10 µm) and dense (density around 97% determined by image analyses) 

electrolyte layers, with a good interface with the anode substrate (Fig. III-20a and Fig. III-

20b, respectively).  

 

 
 

Figure III-20: BSE SEM micrographs of polished cross-section for a sintered half-cell BIT07 / NiO | BIT07 with 

a) overview and b) higher magnification. 

 
 

 
 

Figure III-21: BSE SEM micrograph before (left) and after (right) image treatment of polished cross-section for a 

BIT07 / NiO anode substrate. Pores are in red, BIT07 in green and NiO in yellow. 

 

After sintering at 1350°C for 9 hours, the BIT07 / NiO anodes showed highly 

homogeneous repartition of BIT07 and NiO in the cermet (Fig. III-21). Porosities of the anode 

substrates before reduction were found between 13 and 20%, both by direct measure of the 

volume of the samples and by SEM micrograph analyses. Also, most of the half-cells appeared 

bended after sintering, and thus an ironing step was needed before coating the cathodes. This 

was made by heating the half-cells at 1300°C for 2 hours between 2 alumina plates.  

100 µm

a b

10 µm

10 µm
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Finally, a reactivity between the substrates and the alumina plates occurred during 

sintering, despite a protective layer of GDC powder in between, leading to the formation of a 

brown compound on the bottom of the half-cell. It was not possible to identify this compound 

by XRD, but if insulating it could hinder electrochemical performance by penalising the 

current collection on the anode side. This problem has been solved by sintering the half-cells 

on nickel foam. 

3. Cathode layer deposition by screen printing 

 The three cathode powders La1.95NiO4+  (LaN), Nd1.97NiO4+  (NdN) and Pr1.97NiO4+  

(PrN) were supplied by Marion Technologies (Verniolles, France), with a d50 value of 1.25, 

0.65 and 0.29 µm, respectively. The particles size distribution spectra for the three powders can 

be found in Fig. III-22. SEM micrographs on powders confirm the granulometry 

measurements, as can be seen in Fig. III-23.  

 

 
 

 
 

Figure III-22: Particle size distribution of LaN (left), NdN (middle) and PrN (right) powders from Marion 

Technologies. 
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Figure III-23: SEM micrographs of a) LaN, b) NdN and c) PrN cathode powders. 

 

The inks for the screen printing of the cathode layers have been prepared by mixing the 

cathode powders in a vehicle composed by terpineol (95% min, Alfa Aesar) and 6 Wt% of 

ethylcellulose (Aldrich) as a binder, first by manual grinding in a mortar and then using a 

three-roll mill. The three cathodes have been printed using a mesh for required wet thickness of 

100 µm from Koenen GmbH, Germany, on the sintered BIT07 / NiO (40 : 60 Wt%) | BIT07 

half-cells. The printing involved the deposit of 2 layers, with a drying step at 60°C for 1 hour 

in between. The diameter of the circular cathode layer was 16 mm.  The three cathodes have 

been sintered using the sintering programs optimised by A. Brüll from ICMCB in the frame of 

INNOSFC project, at controlled heating and cooling rates. The sintering temperatures were 

thus 1050°C for NdN and PrN and 1100°C for LaN, dwelling times 1 hour. 

By applying an adhesive tape on the sintered cathode layers, PrN delaminated 

completely when removing the tape, while NdN and LaN stayed fully attached. SEM 

characterisations on cross-sections of the complete cells with the three cathodes have been 

performed and are presented in Fig. III-24.  

In the three cases, the layers obtained presented homogeneous thicknesses around 25 - 

30 µm for LaN and PrN and 50 µm for NdN with homogeneous microstructures. The 

difference of thicknesses comes from the loading of the screen printing pastes.  

Porosities seem also adapted for the three cathodes. However, while NdN seems well 

bonded to the BIT07 electrolyte, the quality of the electrolyte / cathode interface is fairly 

lower in the case of LaN and PrN. In addition, the PrN layer appeared slightly cracked, 

which might be due to the relatively small size of the PrN particles leading to higher sintering 

activity and thus higher shrinkages. Using a PrN cathode powder with larger grains, for 

instance with a median size of 0.4 µm as optimised by Ferchaud et al. for a Pr2NiO4+  cathode 

on YSZ electrolyte [260], may allow to reduce the cracks. 

5 µm10 µm 5 µm

a b c
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Fig. III-24: BSE SEM micrographs of polished cross-sections for the cells a) 

BIT07 / NiO | BIT07 | LaN, b) BIT07 / NiO | BIT07 | NdN and c) 

BIT07/NiO | BIT07 | PrN. 
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4. Towards a second generation of cells 

4.1. Introduction of a cathode barrier layer 

To improve the bonding between the cathode and the electrolyte, and more generally 

the quality of the cathode / electrolyte interface, the use of a thin (2-3 µm) Ce0.9Gd0.1O2-  (GDC 

for gadolinia doped ceria) barrier layer in between BIT07 and the three nickelates has been 

studied on the basis of the work of C. Ferchaud et al. [260] and the results obtained on 

symmetrical cells LnN ( | GDC | ) | BIT07 | ( | GDC | ) LnN by A. Brüll in the frame of the 

INNOSOFC project.  

The GDC powder supplied by Marion Technologies (Verniolles, France) presents a 

particle size around 0.2 - 0.3 µm with a monomodal distribution, according to laser 

granulometry measurements.  

The GDC layer has been deposited by screen printing on sintered half-cells using a 50 

µm wet thickness mesh (one layer), and sintered at 1350°C for 2 hours. Note that in this case 

the ink has been prepared with lower solid content to obtain thin layers. The three different 

cathodes have been deposited by screen printing as well, as described in the previous section, 

and sintered at 1170°C for 1 hour as optimised by Ferchaud et al. for a GDC | PrN assembly 

[260].  

Polished cross-section micrographs of the obtained cells are shown in Fig. III-25.  

In the three cases, a thin and homogeneous layer of GDC can be observed. However, 

the adherence of the GDC layer on BIT07 seems fairly poor, and the layer appeared porous and 

cracked. Meanwhile, the interface with the cathodes is substantially improved, with a good 

adherence obtained for the three cathodes. In the case of PrN, the increased sintering 

temperature increased the number of cracks compared to what was observed in Fig. III-24c, 

although the cracks appeared mainly superficial (Fig. III-25c).  
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Figure III-25: BSE SEM micrographs of polished cross-sections for 

the cells a) BIT07 / NiO | BIT07 | GDC | LaN, b) BIT07 / NiO | 

BIT07 | GDC | NdN and c) BIT07/NiO | BIT07 | GDC | PrN. 

 

In a wish to keep the number of sintering steps as low as possible and to improve both 

densification and adherence of the GDC layer, attempt has been made to co-sinter the BIT07 

electrolyte layer with the thin layer of GDC. As concerns the coating of GDC by screen 

printing, no cell has been obtained due to the breaking of the substrates (at this step only pre-
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sintered) during the printing process: increased mechanical cohesion would be thus needed for 

using screen printing. 

Therefore, deposit of BIT07 and GDC layers by vacuum slip casting has been 

considered. The GDC slip has been prepared using the same protocol as for the BIT07 powder, 

with a concentration of the suspension around 10.5 g / L and a GDC particle size below 0.1 µm 

(SEM of the powder shown in Fig III-26).  

 

 
 

Figure III-26: SEM micrograph of the GDC powder after 

ball-milling during 100 hours. 

 

From our observations, coating GDC by vacuum slip casting on a green layer of BIT07 

gave limited available thicknesses. Indeed, when adding a too large amount of GDC 

suspension, both BIT07 and GDC green layers cracked and delaminated during drying, as 

shown in Fig. III-27a. Reducing the volume of GDC slip to 1 mL (corresponding to a targeted 

thickness around 2 µm) resulted in a crack-free GDC layer after drying (Fig. III-27b).  

 

 
 

Figure III-27: Picture of half-cells BIT07 / NiO | BIT07 

(green) | GDC (green) after drying with a) 3 mL of GDC 

suspension and b) 1 mL of GDC suspension. 
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After co-sintering, a homogeneous and thin layer (around 2 µm) of GDC has been 

obtained, as can be seen on the SEM micrograph in Fig. III-28. The BIT07 / GDC interface as 

well as the density of the GDC layer have been substantially improved; nonetheless, both 

layers appeared cracked due to the too high difference of sintering behaviour between the two 

layers. This could be improved by an increase of the particle size of the GDC powder in the 

slip (reduced ball-milling time) to decrease its sinterability, although dilatometry data would be 

needed to get relevant information on the respective sintering behaviours of the BIT07 and 

GDC powders.  

 

 
 

Figure III-28: BSE SEM micrograph of polished cross-section for the half-cell 

BIT07 / NiO | BIT07 | GDC, BIT07 electrolyte and GDC layers deposited by 

vacuum slip casting and co-sintered at 1350°C for 9 hours. 

 

Tests with pre-sintering the BIT07 electrolyte layer at 1200°C for 6 hours prior to 

casting the GDC layer have been performed in order to try to create a bonding between the 

BIT07 grains and thus improve the thermal matching of the two layers.  

As can be seen in Fig. III-29 for a complete cell with PrN as cathode, densification of 

the GDC layer remains still better than for the layer deposited by screen printing on sintered 

half-cells; the cracks have been substantially reduced compared to the co-sintered samples but 

are nevertheless still present. We can also see from the SEM micrograph that a reactivity 

occurred in between the PrN cathode and the BIT07 electrolyte at the areas not covered by 

GDC, determined by EDX to be a diffusion of Pr. In this case as well, a small reduction of the 

ball-milling time of the GDC slip will increase the particle size of the powder and thus could 

10 µm 5 µm
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reduce its sinterability, improving the cracking behaviour. An increase of the GDC layer 

thickness could also help the covering of BIT07. 

 

 
 

Figure III-29: BSE SEM micrograph of polished cross-section for the cell 

BIT07 / NiO | BIT07 | GDC | PrN, with BIT07 electrolyte sintered at 1200°C 

for 6 hours prior to GDC layer casting. 

 

4.2. Transfer to powders from other suppliers 

In the frame of the INNOSOFC project, a batch of BIT07 powder has been supplied by 

Marion Technologies, labelled MT1. This powder presents a particle size significantly lower 

than the powder from EMPA, as can been seen by SEM in Fig. III-30, with a d50 value around 

0.22 µm (particle size distribution shown in Fig. III-31). The phase was pure in the sense of X-

Ray diffraction. 

 

 
 

Figure III-30: SEM micrographs of the BIT07 powders supplied by a) EMPA and b) Marion Technologies. 
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Figure III-31: Particle size distribution of the BIT07 powder 

supplied by Marion Technologies (batch MT1). 
 

The recipe for tape casting developed with the BIT07 supplied by EMPA has been 

successfully transferred to the powder supplied by Marion Technologies (Fig. III-32.), with a 

decrease of the solid loading from 34% to 24.5% due to the lower particle size of the MT1 

powder. 

 

 
 

Figure III-32: Green tape BIT07 (MT1) / NiO 40 : 60 Wt%. 

 

However, most of the substrates appeared cracked after pre-sintering, as illustrated in 

Fig. III-33, making impossible the elaboration of complete cells. Following the TGA 
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measurements performed on standard green tapes, lowering the heating rate in the temperature 

range 25 - 500°C down to 0.2°C / min (instead of 1°C / min) to decrease thermal stresses 

during debinding was attempted, but appeared not effective to solve the problem. 

 
 

 
 

Figure III-33: Substrate BIT07 (MT1) / 

NiO 40 : 60 Wt% after pre-sintering at 

1150°C for 6 hours. 

 

Two more batches of BIT07 powder (labelled MT2 and MT3) with increased particle 

size (Fig. III-34), have been supplied by Marion Technologies and tapes BIT07 (MTx) / NiO 

were successfully tape-casted. Even if reduced (especially for MT3-based substrates), the 

cracking of the substrates during pre-sintering could however not be completely avoided.  

 

 
 

Figure III-34: Particle size distributions of the BIT07 powders supplied by Marion Technologies 

with on the right the batch MT2 and on the left the batch MT3. 

 

 Attempts to heat the BIT07 powders at different temperatures to increase their particle 

size (heating treatments between 1050°C and 1300°C during 6 hours) before using them have 
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been realised, without solving completely the above mentioned problem of cracks. The best 

results have been obtained with the MT3 batch heated at 1250°C for 6 hours. A ball-milling 

treatment of the powders after heating to remove the bigger grains and thus homogenise their 

particle size distribution is viewed for the future as a potential solution. As concerns the 

vacuum slip casting of the electrolyte, suitable layers have been obtained with MT1 and MT2 

batches, with a slip ball-milled 24 h (compared to 100 h for the BIT07 from EMPA), both on 

standard BIT07 (EMPA) / NiO and BIT07 (MTx) / NiO (non-cracked) substrates, as illustrated 

in Fig III-35 for an electrolyte made of MT2 on EMPA-based substrates.  

 

 

Figure III-35: BSE SEM micrograph of polished cross-section for 

the cell BIT07 (EMPA) / NiO | BIT07 (MT2) | LaN. 

 

4.3. Introduction of an anode functional layer 

In the anode-supported cell configuration, a coarse anodic microstructure of the anode 

substrate is beneficial for the rapid transport of the fuel gas throughout the whole thickness of 

the anode and the produced steam to / from the active reaction sites at the interface between the 

anode and electrolyte. However, triple phase boundaries (TPBs) are crucial for the 

electrochemical reactions, and the longer the TPB is, the higher the fuel cell performance 

becomes. Fine particles in an anode functional layer increase the length of the TPB, which 

results in faster kinetics of the charge transfer reactions and higher fuel cell performance.  

In this study, both BIT07 and BLITiMn in association with NiO have been considered 

as anode functional layers. The BLITIMn powder was supplied by EMPA, with d50 = 1.16 µm. 

The chosen deposition technique was vacuum slip casting since pre-sintered substrates have, as 

already mentioned, insufficient mechanical cohesion for depositing by screen printing.  

20 µm
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The preparation of the suspensions involved ball-milling separately the BIT07 or 

BLITiMn and NiO powders for 48 hours, based on the optimisations performed in 

Forschungszentrum Jülich; the sedimentation times for the BIT07 / BLITiMn and NiO ceramic 

powder slips were 6 hours and 10 min, respectively. Both NiO and ceramic suspensions were 

then mixed to obtain a weight ratio BIT07 or BLITiMn / NiO powders of 44 : 56, the ceramic 

content being increased compared to the anode substrate to improve the interface with the 

electrolyte [296].  

Both anode functional layers have been deposited on standard BIT07 (EMPA) / NiO 

substrates, with a targeted thickness between 5 and 10 µm selected on the basis of the work of 

Schafbauer et al. [296]. The dried deposited layers have been then sintered at 1050°C for 6 

hours, followed by the deposit of the electrolyte layer and the final sintering of the half-cell at 

1350°C for 9 hours.  

SEM micrographs of the polished cross-sections of the obtained half-cells are shown in 

Fig. III-36.  

In both cases, a thin and homogeneous anode functional layer was obtained, well 

bounded with the anode substrate. For the BIT07 (MT2) / NiO layer, high shrinkage occurred 

during final sintering leading to a thin (around 5 µm) and dense layer, though with a good 

interface with the electrolyte (Fig. III-36a). The obtained BLITiMn (EMPA) / NiO layer was 

thicker (around 20 µm) and more porous, but the quality of its interface with the electrolyte 

layer appeared lower (see Fig. III-36b). This phenomenon might be explained by the lower 

sinterability of BLITiMn compared to BIT07 [181]. 

 Concerning the anode functional layer involving BLITiMn, increasing both the 

BLITiMn content and its ball-milling time may allow an improvement of both the layer, by 

increasing the sinterability of BLITiMn, and its interface with BIT07. The porosity of the 

functional layer involving BIT07 might be increased by adding a pore forming agent to the 

slip.  
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Figure III-36: BSE SEM micrographs of polished cross-sections for the half-

cells a) BIT07 (EMPA) / NiO | BIT07 (MT2) / NiO | BIT07 (MT2) and b) 

BIT07 (EMPA) / NiO | BLITiMn (EMPA) / NiO | BIT07 (MT2). 

 

4.4. Use of starch gel as a pore forming agent 

After reduction, the porosities of the anode substrates were ranging from 18 to 35%, for 

a targeted minimum porosity of 30%. To ensure that all substrates are fulfilling the porosity 

requirements, gelled starch pore forming agent has been selected to process our cells, on the 

basis of the work of G. Taillades et al. [304].  

The required amount of starch powder is added to water and heated to 80°C with 

stirring until pre-jellification occurs. The proper amount of BIT07 (in this study batch MT1) 

and NiO powders are mixed with the gel and the mixture is dried for 12 hours at 120°C. The 

resulting powder mixture is then manually grinded and used in the slurry. 

20 µm 5 µm

a

20 µm 5 µm

b
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The addition of jellified starch in the slurries led to significant modifications in the 

formulations. As suggested by Corbin and Apté [305], a first attempt was made by keeping the 

total weight ratio between solid content (thus powders + starch) and organic additives constant 

(the solid loading has been decreased). It resulted in an un-homogeneous slurry and 

consequently considerable heterogeneities appeared during and after drying, suggesting a 

complete demixing of the system as shown in Fig. III-37.  

 

 
 

Figure III-37: Picture of a green tape BIT07 (MT1) / NiO 

containing 2 Wt% of jellified starch. 

 

 This experiment indicates that the introduction of starch gel requires an additional 

amount of organics to disperse it, following the conclusions of Sanson et al. [306]. Indeed, 

starch is composed by two polysaccharides: the linear and helical amylose (20 - 25 Wt%) and 

the branched amylopectin (75 - 80 Wt%). When heated in water, the granules are breaking up 

and the amylose and amylopectin are solubilised, giving grains with sizes around 25 nm after 

drying [307]. Thus, binder content had to be significantly increased to disperse and stabilise the 

nanometric particles. 

 Green tapes containing 2 and 4 Wt% of jellified starch (% relative to the weight of 

ceramic powders) have been successfully casted using the new formulations given in Table III-

4. Note that in this case the solid amount refers to the amount of BIT07, NiO and starch gel.  

 

 

20 cm
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In the case of anode substrates containing jellified starch, shrinkages of around 19% 

after sintering at 1350°C for 9 hours have been obtained, a value that is slightly higher than for 

the substrates without pore forming agent made with the MT1 powder (17%). This higher 

shrinkage value may indicate that there is a reduction of the ceramic particle packing in the 

green tapes due to the distribution of the extra organic additives on the surface of the pore 

forming agent, thus going in the way of a good dispersion of the elements in the slurry.  

After sintering, fine (sizes around 1 - 2 µm) and well distributed pores have been 

obtained (Fig. III-38).  

 

 
 

Figure III-38: BSE SEM micrograph of polished cross-section for a 

BIT07 (MT1) / NiO anode substrate containing 4 Wt% of jellified 

starch. 

 

 By SEM micrograph image treatment (average made on three micrographs taken at 

three different locations), the different proportion of each constituent (BIT07, NiO and pores) 

20 µm

Table III-4:  
Slurry formulation for the tapes involving jellified starch as a pore forming agent. 
 

Material 

Wt% / 

solid 

amount 

Vol% 

green tape 

Wt% / 

solid 

amount 

Vol% green 

tape 

Wt% / 

solid 

amount 

Vol% 

green tape 

Starch gel 0 0 2 9.16 4 16.63 

Ethyl Alcohol 13.36  13.36  15.69  

Methyl Ethyl Ketone 25.93  25.93  30.46  

Dispersant 1 2.74 1.8 4.31 1.8  

Binder 6 17.25 8.5 18.78 8.5 17.37 

Plasticiser I 5.5 17.97 7 17.57 7 16.26 

Plasticiser II 4.5 12.59 6 12.90 6 11.94 
 



Chapter III: Fabrication and characterisation of cells 
 

 

124 

could be determined. Thus, substrates without pore formers were presenting around 8% of 

porosity, while adding 2 Wt% and 4 Wt% of jellified starch gave porosities of around 13% and 

25%, respectively. The Fig. III-39 shows the SEM micrographs of the polished cross-sections 

and the corresponding treated images for the substrates with 0, 2 and 4 Wt% of starch gel. The 

Table III-5 gives the details about the relative proportions of each phase (BIT07, NiO and 

pores). The additional obtained porosity is well correlated to the volume fraction of jellified 

starch present in the slurry.  

 

 
 

Figure III-39: BSE SEM micrographs before and after image treatment of polished cross-sections for BIT07 

(MT1) / NiO anode substrates a) without pore-former, b) containing 2 Wt% of jellified starch and c) containing 

4 Wt% of jellified starch, with pores in red, NiO in yellow and BIT07 in green. 

 

 

 

10 µm

a

b

c

10 µm
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Table III-5:  
Proportion of each phase in sintered BIT07 (MT1) / NiO substrates containing 0, 2 and 4 Wt% of jellified starch 

as a pore forming agent. 
 

Phase 0 Wt % starch gel 2 Wt % starch gel 4 Wt % starch gel 

pores 8% ± 2% 13% ± 2% 25% 

NiO 63% ± 3% 57% ± 7% 47% ± 4% 

BIT07 28% ± 3% 30% ± 5% 27% ± 4% 
 

  

The use of jellified starch gel as a pore forming agent seems thus like an effective way 

to produce anode substrates by tape casting with a highly homogeneous repartition of small-

sized pores. Adding 4 Wt% of jellified starch gave porosities around 25% on non-reduced 

substrates, which is well fitting with the anode specifications. However, no complete cells have 

been obtained due to the swelling of some substrates during pre-sintering, probably due to the 

larger amount of organics to be burned, also when using slower heating rates (tests made with 

heating rates down to 0.2°C / min). In addition, the reduced mechanical strength linked to the 

increased porosity made difficult the deposit of the electrolyte layer by vacuum slip casting. In 

opposition, the number of cracks observed on substrates decreased compared to substrates 

without pore former based on MT1 powder, coming from the reduced shrinkage and thus 

reduced stress during pre-sintering. 

The next step of this study would be to introduce starch gel in slurries using larger 

ceramic grain sizes; decreased sinterability induces higher porosity, giving more paths for the 

organic vapour motion in the substrates during debinding.  

4.5. Up-scaling 

As described in the first three paragraphs of this chapter, a shaping protocol has been 

implemented at lab scale for the elaboration of complete cells based on BIT07 EMPA powders. 

To further validate this protocol at a pre-industrial scale, attempts have been made to produce 

larger cells (targeted size 10 × 10 cm²). For this purpose, the first step concerned the increase 

of the size of the green tapes. 

Larger volume of slurry using the standard formulation (Table III-2) was prepared and 

cast, with an obtained green tape size around 20 × 40 cm². In this case however the dried tape 

appeared oily with “raindrop” patterns of plasticiser on the surface. This oily surface is coming 

from a large excess of plasticiser, most likely type II (the lubricant) since it has a little or no 

chemical reaction with the other components of the system [41]. In this case, a phase 

separation is observed and the plasticiser does not remain homogeneously distributed in the 
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tape matrix, and even squeezes out of the matrix during drying shrinkage. This difference of 

behaviour compared to the smaller tapes might come from the slower drying rate of the larger 

volumes, giving more time to the polymer chains to reorganise and leading thus to higher 

shrinkages.  

A new formulation with decreased plasticiser content to 5 Wt% and 4 Wt% (relative to 

solid amount) for type I and type II plasticisers, respectively, gave good quality green tapes, as 

shown in Fig. III-40. Note that this new formulation has been successfully used in smaller 

batches. 

 

 
 

Figure III-40: Picture of a green tape BIT07 (EMPA) / NiO from larger slurry. 

 

The green tape was then cut in 12.2 × 12.2 cm² piece(s), for a final product size of 10 × 

10 cm², and pre-sintered at 1150°C for 6 hours. After pre-sintering, crack-free substrates (size 

11.4 × 11.4 cm²) have been obtained, as shown in Fig. III-41.  

However, these large substrates appeared slightly swelled and were thus breaking 

during the vacuum slip casting process, making so far impossible the production of complete 

cells. The first explanation to the swelling might come from inhomogeneities in the green 

tapes, related to eventual inhomogeneities in the slurries themselves, less critical in the smaller 

batches. This difference of behaviour during the pre-sintering step might also be linked to the 

increased size of the substrates: we observed in smaller substrates that at around 300°C the 

substrates are bending upwards, recovering their flatness at increased temperatures. This 

bending allows organics removal from both sides of the substrates. However, in the case of 

larger cells, it might be assumed that since the weight to move upwards is greater, more surface 

40 cm
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remains in contact with the sintering plate, organic vapours going downwards causing the 

swelling. Also, temperature gradients in the furnace’s chamber may cause differential thermal 

behaviour within the substrate.  

 

 
 

Figure III-41: Substrates BIT07 (MT1) / NiO after pre-sintering at 1150°C 

for 6 hours. 

 

SEM analyses on cross-section of sintered substrates from larger tapes would give more 

information about the repartition of matter through the thickness of the tapes. Sintering on 

nickel foam to allow binder burnout from both up and down sides could also help to keep the 

flatness of the tapes.  

Moreover, depositing the electrolyte layer on green tapes instead of pre-sintered 

substrates would avoid the problem of breaking of the substrates, as shown in the work of Rieu 

et al. where high quality half-cells of 10 × 10 cm² size were obtained by screen printing BIT07 

on YSZ / NiO green tapes [308]. In our case, promising results have been obtained on 4 × 4 

cm² green substrates using this protocol, both on BIT07 (EMPA) / NiO and BIT07 (MT1) / 

NiO, with BIT07 batch MT1 as an electrolyte. Note that in this case, the electrolyte sintering 

time could be decreased down to 5 hours.  

 

11.4 cm
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5. Conclusion 

In this chapter, the development of a protocol for the elaboration of anode-supported 

complete cells has been detailed.  

The first part was devoted to the tape casting process for the elaboration of the anode 

substrates. The scientific pathway for the determination of a slurry formulation for BIT07 

(EMPA) / NiO (J.T. Baker
®

) 40 : 60 Wt% using environmental friendly additives has been 

described. Efforts have been made in differentiating the influence of parameters such as drying 

speed or binder content on the drying behaviour of the tapes. A suitable recipe giving high 

quality tapes in a reproducible way could be proposed. The optimum pre-sintering program 

for the substrates has been set to 1150°C for 6 hours. 

Afterwards, deposit of the BIT07 (EMPA) electrolyte by vacuum slip casting followed 

by at sintering step at 1350°C for 9 hours has been achieved. Good quality sintered anode 

substrates with a homogeneous repartition of the BIT07 and NiO grains were obtained, though 

with a porosity slightly too low for optimum diffusion of gaseous species through the thickness 

of the anode substrate. The electrolytes appeared thin (around 10 µm thickness) and dense. 

The cathode deposition was the object of the third part. The three cathode materials 

involved in this study have been successfully deposited by screen printing and sintered using 

the temperatures and dwelling optimised in the INNOSOFC project. The best cathode / 

electrolyte interface in terms of adherence has been obtained with Nd1.97NiO4+ . The adhesion 

of Pr1.97NiO4+  on BIT07 appeared poor, with in addition cracks in the cathode layer explained 

by the small particle size of the cathode powder.  

Finally, the work described led to the successful determination of a shaping protocol for 

a first generation of cells.  

However, some issues and possible improvement ways have been pointed out:  

i) On the cathode side, significant improvement of the cathode / electrolyte 

interfaces has been obtained by adding a functional layer of GDC, although work remains to 

be done mainly to increase the density of this GDC layer. An optimisation of the sintering 

program of the cathodes on GDC remains also to be done. 

ii) Concerning the half-cells, further tests have been performed for the 

microstructural optimisation of the anode substrates: 
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- First, the slurry formulation has been successfully transferred to BIT07 powders 

supplied by Marion Technologies. Although good quality green tapes have been obtained, 

problems of cracking during pre-sintering still subsist. 

- Second, thin anode functional layers BIT07 (MT2) / NiO (J.T. Baker
®
) and 

BLITiMn (EMPA) / NiO (J.T. Baker
®

) were also introduced, with an obtained BIT07 / NiO 

layer presenting a high density and for BLITiMn a poor interface with the electrolyte layer. 

- Then, the introduction of jellified starch as a pore forming agent has been assessed 

in order to optimise the anode substrate microstructure; a slurry formulation has been 

developed and successful tape casting of green tapes has been done. The limiting step however 

remained the pre-sintering, making so far difficult the elaboration of complete cells. 

Finally, larger size green tapes (11.4 × 11.4 cm
2
) have been casted and crack-free 

substrates could be obtained, for a final product size of 10 × 10 cm
2
. These substrates were 

however breaking during the vacuum slip casting process. An optimisation of the pre-sintering 

step and an increase in the thickness of the substrates could be proposed as possible solutions 

to improve their mechanical strength. 
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Chapter IV  

Electrochemical characterisation of cells 

 

 
 

This chapter presents several electrochemical results on performance and reliability of 

BIT07 / nickelates couple-based cells made using our procedure.  

As described in Chapter I, a working cell exhibits kinetic losses (overpotentials, 

polarisations or voltage losses), increasing with the current density. A direct measure of the 

voltage vs. current, so called I-V curve (or I-P characteristics for power density vs. current), 

allows the identification of the overall losses of a cell and the direct determination of its 

performance. The testing of the cells has been performed using the setup described in Chapter 

II, under air at the cathode side and dry hydrogen at the anode side, with a testing protocol as 

follows:  

- injection of the air on the cathode side (4 L / hour),  

- injection of the nitrogen on the anode side (4 L / hour), 

- heating up until 700°C with a rate of 60°C / hour, 

- reduction of the anode by replacing N2 with H2 step by step (12% of the total flow 

per 5 minutes, target 4 L / hour). The gas-switching speed depends on the response of the cell 

voltage.  

- optimisation of electrical contacts under current,  

- stabilisation of the Open Circuit Voltage (OCV) at 700°C (typically 24 hours), 

- I-V curve (Vlimit = 0.6 V, scanning speed 5 mA s
-1

) and impedance measurements. 

The first section of this chapter relates the main results about the first generation of 

cells associating BIT07 electrolyte with the LnN cathode materials. The performance will be 

compared in a second part with those of the second generation of cells involving the addition 

of a GDC barrier layer in between the cathode and the electrolyte. Finally, preliminary results 

on optimisations at the half-cell level will be presented.  
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1. Influence of the cathode material 

1.1. I -V and power density characteristics 

1.1.1 Experimental results 

This series of tests concerns the first generation of planar anode-supported BIT07 / 

NiO | BIT07 | LnN (with Ln = La, Nd and Pr) cells, prepared using the protocol described in 

the previous chapter.  

The I-V characteristics of BIT07-based cells using three different types of cathodes are 

shown in Fig. IV-1. The values of OCV, total Area Specific Resistance (ASR(I-V)), power 

density at 0.7 V and maximal power density at 700°C for each cell are presented in Table IV-

1. The given ASR values are determined by taking the slope of the I-V curve around the 

operating point 0.7 V and correspond to the total resistance of the cells, including both ohmic 

and polarisation losses (activation and concentration), given per surface unit (in our case the 

active surface of the cells is 2 cm2). The given maximal power densities Pmax are extrapolated 

values assuming the linearity of the I-V curves.  

 

 

 

 

 
 

Figure IV-1: I-V curves and power densities under dry hydrogen at 700°C for the cells 

BIT07 / Ni | BIT07 | LnN with Ln = La, Nd and Pr. 
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Table IV-1:  

OCV, total ASR and power densities (P(0.7V) and Pmax) for the cells BIT07 / Ni | BIT07 | LnN (Ln = La, Nd, Pr). 
 

cathode 
OCV 

(V) 

ASR(I-V) 

(Ω cm
2
) 

P(0.7V) 

(mW cm
-2

) 

Pmax 

(mW cm
-2

) 

LaN 0.86 2.28 47 78 

NdN 0.78 9.88 6 16 

PrN 0.83 2.41 34 67 
 

 

The cell with NdN cathode exhibited by far the lowest performance of this series of 

measurements, with a high total ASR value of 9.7 Ω cm² at 700°C. In comparison, power 

densities above 500 mW cm
-2

 have been reported at 700°C and 0.7 V by Lalanne et al. with 

Nd1.95NiO4+  cathode on YSZ electrolyte (commercial HT-Ceramix half-cells) [255]; another 

study from Letilly et al. showed ASR values for Nd2NiO4+  on BIT07 around 3 Ω cm² at 

700°C (symmetrical cell) [254]. Also, as the half-cells are considered as identical for the three 

cells tested here, such low performance has been attributed to the cathode side and in 

particular to the quality of the cathode powder, with for example a batch presenting a low 

value of conductivity. Electrical measurements are thus needed on this powder to validate this 

hypothesis.  

The highest performance, corresponding to a maximal power density of 78 mW cm
-2

 

and a total ASR of 2.4 Ω cm², has been obtained with the cell BIT07 / Ni | BIT07 | LaN, 

although PrN is usually shown as being the most performing cathode among this family of 

nickelates [259]. The first reason of this various performance is the higher OCV value of the 

cell using LaN as cathode, as the total ASR for the two cells are quite similar. These results 

are however in accordance with the microstructures of the complete cells presented in 

Chapter III, the cathode / electrolyte interface being better for the couple BIT07 / LaN than 

for BIT07 / PrN (Fig. III-23).  

1.1.2 Discussion about the OCV values 

For the three tested cells, OCV values are low (< 0.85 V at 700°C) compared to the 

expected theoretical value (above 1.2 V) under equivalent conditions (i.e. using dry hydrogen 

inlet), considering experimental results obtained at stack level using standard materials.  

NB: the theoretical value of the OCV could not be here calculated due to the lack of 

information regarding the water content (and thus pH2O) in the hydrogen inlet of our test rig, 

since the measurements have been performed without humidification of the gas.  
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The first explanation of such low OCVs could be the presence of leakages caused by 

macroscopic defects in the electrolyte layer. For instance, defects as (a few) microscopic 

cracks have been observed after the electrolyte sintering step, as the one shown in Fig. IV-2. 

The presence of such defects induces gas leakages in the cells and may lead to a decrease of 

the OCV values.   

 

 
Figure IV-2: BSE SEM micrograph (top view) of a crack 

observed in a half-cell BIT07 / NiO | BIT07. 

 

Also, it is typical for doped perovskites to be pure oxygen-ion (or n-type) conductors 

at low oxygen partial pressures but to become mixed conductors at high oxygen partial 

pressures, acquiring p-type electronic conductivity [309]. For instance, acceptor-doped 

BaTiO3-  with trivalent cations as Al
3+

, Ho
3+

, Dy
3+

, Y
3+

, Er
3+

 has been shown in the literature 

as being p-type conductor with a transition p-to-n at lower oxygen partial pressures [310-312].  

Thus, an electronic contribution to the conductivity of an electrolyte can result in a 

deleterious leakage of current during operation, which can significantly degrade the efficiency 

and performance of a cell [313-316]. 

All OCV values of previous BIT07-based tested cells are reported in Table IV-2. 

These values come from IMN data and were obtained with small-sized cells ( 10 mm). 

Although the size of the tested cells can explain the difference between the obtained OCV 

values and the theoretical Nernst potential as the small-sized cells need a very careful sealing 

in order to minimise gas leakage, a small electronic contribution to the conductivity of BIT07 

can however be here envisaged. 

 

20 µm
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Conductivity measurements have been thus performed by EIS at ICMCB on dense 

BIT07 pellets (density > 95% of the theoretical density, diameter 6 mm and thickness 

around 2 mm) using platinum electrodes on both sides. For obtaining dense pellets, a decrease 

of the initial particle size has been necessary, done by planetary-milling the powder during 60 

hours at 540 rpm using agate balls and ethanol as a solvent. This grinding step induced an 

exsolution of the barium with the formation of BaCO3 (Fig. IV-3), as observed in smaller 

Table IV-2:  

OCV values reported at different temperatures and atmospheres for cells based on BIT07. Air was always used in 

the cathode side. Theoretical OCV values are calculated assuming a water content of 3%. 
 

cathode temperature atmosphere 

electrolyte 

thickness 

(µm) 

Theoretical 

OCV 

OCV 

(V) 

Ratio 

OCV / 

theoretical 

value 

Reference 

LSM 810°C dry H2 550 / 1.046 / [252, 317] 

 
810°C wet H2  

1.110 0.976 88% [317] 

 
810°C wet Ar / 5% H2 0.960 ~ 0.9 94% [317] 

 
690°C dry H2 100 / 0.92 / [252, 317] 

LSCF 700°C wet H2 23 1.119 0.97 87% [249] 

 
700°C wet H2 11  1 89% [249] 

 
650°C wet H2 15 1.128 0.72 64% [318] 

 
700°C wet H2 15 1.119 0.75 67% [318] 

 
600°C wet H2 16 1.137 0.89 78% [303] 

 
650°C wet H2  

1.128 0.88 78% [303] 

 
700°C wet H2  

1.119 0.92 82% [303] 

 
750°C wet H2  

1.110 0.97 87% [303] 

BIT07 / 

LSCF 
600°C wet H2 18 1.137 1.06 93% [303] 

 
650°C wet H2  

1.128 1.06 94% [303] 

 
700°C wet H2  

1.119 1.05 94% [303] 

 
750°C wet H2  

1.110 1.05 95% [303] 

Nd2NiO4+  600°C wet H2 20 1.137 0.843 74% [318] 

 
650°C wet H2  

1.128 0.809 72% [318] 

 
700°C wet H2  

1.119 0.807 72% [318] 

 
750°C wet H2  

1.110 0.807 73% [318] 

Pr2NiO4+  600°C wet H2 / 1.137 0.875 77% [318] 

 
650°C wet H2 / 1.128 0.843 75% [318] 

 
700°C wet H2 / 1.119 0.914 82% [318] 

 
750°C wet H2 / 1.110 0.9 81% [318] 

GDC | 

Pr2NiO4+  
600°C wet H2 3 | 10 1.137 1.11 98% [318] 

 
650°C wet H2  

1.128 1.11 98% [318] 

 
700°C wet H2  

1.119 1.07 96% [318] 

 
750°C wet H2  

1.110 1.07 96% [318] 
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magnitude for the powder after 100 hours of ball-milling used for the elaboration of our 

electrolytes (Fig. III-18). The barium carbonate however disappeared after sintering at 

1400°C for 10 hours, and the formation of In2O3 was observed. Diffraction peaks of BIT07 

appeared shifted to higher angles, which indicates a diminution of the lattice parameter. The 

same behaviour was observed for the BIT07 powder from the MT1 batch after planetary mill. 

The shift to higher angles is also observed for the BIT07 electrolyte layer of our cells. 

 

 

Figure IV-3: X-Rays Powder Diffraction pattern for the BIT07 powder supplied by EMPA after 

planetary milling and subsequent sintering at 1400°C for 10 hours. 

 

Impedance spectra have been recorded at various temperatures between 500°C and 

800°C in air and H2 atmospheres. Conductivities have been calculated from the value of the 

series resistance , corresponding to the intersection of the impedance spectra with the real 

axis at high frequencies, using the following formula:  

 

 (13) 

 

where L is the thickness of the electrolyte and S its surface. The Arrhenius plot of the 

corresponding conductivity values in air and dry H2 is shown in Fig. IV-4.  
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Figure IV-4: Arrhenius plot of the conductivity of BIT07 in air and dry H2 atmospheres. 

 

The measured conductivity of BIT07 in air reaches 5.9 × 10
-3

 S cm
-1

 at 700°C, value 

slightly below the targeted 10
-2

 S cm
-1

 obtained on powders produced by solid state reaction at 

lab scale (IMN process [120]). In addition, a decrease of this value down to 3.6 × 10
-3

 S cm
-1

 

in hydrogen atmosphere is observed.  

For the MT1 powder, impedance spectra have been recorded at 700°C under air, Ar, 

Ar / H2 (95% / 5%), wet and dry H2 atmospheres, respectively; corresponding conductivities 

are shown in Table IV-3.  

 

Table IV-3:  

Conductivities of different BIT07 powders at 700°C under different atmospheres, measured at ICMCB and at 

IMN. The mention (shift) refers to powders where a shift of the XRD pattern to the high angles was observed. 
 

Batch  EMPA (shift) EMPA MT1 (shift) MTIMN 

Setup  ICMCB IMN ICMCB IMN 

Atmosphere 

Air 5.9 × 10
-3

 6.8 × 10
-3

 5.82 × 10
-3

 8.4 × 10
-3

 

Ar / / 3.07 × 10
-3

 / 

Ar / 5% H2 wet / 5.4 × 10
-3

 / 6.3 × 10
-3

 

Ar / 5% H2 dry / / 2.57 × 10
-3

 / 

H2 wet 3.55 × 10
-3

 / 2.91 × 10
-3

 / 

H2 dry 3.63 × 10
-3

 / 2.95 × 10
-3

 / 
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As a general trend, the conductivity values decreased with decreasing the pO2. These 

measurements have been compared to the results obtained at IMN (measurements performed 

in air and wet Ar / H2 95% / 5% on 8 mm and 1.5 mm thick pellets, using gold paste 

electrodes, theoretical densities > 95%) on non-grinded EMPA powder and another batch of 

BIT07 supplied by Marion Technologies to the IMN, labelled MTIMN. Note that the EMPA 

pellet prepared at the IMN did not need any grinding of the powder to obtain adequate 

densification due to the use of a binder (Rhodoviol
®
); the MTIMN powder was planetary milled 

for 15 hours in absolute ethanol, with no formation of barium carbonate detected after the 

grinding step due to the use of anhydrous solvent. Values at 700°C are also shown in Table 

IV-3.  

A slightly higher conductivity value has been found for the EMPA and MTIMN 

powders, prepared and measured at the IMN, which can be correlated to the negative 

influence of the grinding step on the properties of BIT07. The diminution of the conductivity 

observed in all the cases in reducing atmosphere suggests a small p-type conductivity of 

BIT07 in oxidising atmosphere, although the phenomenon is less pronounced for the non-

grinded powders. Note that this can also be attributed to the milling treatments of the 

powders, leading to a partial decomposition of the BIT07 phase and the formation of 

insulating layers at grain boundaries [319]. 

For a p-type conductor, oxygen-ion vacancies react with oxygen at high temperatures 

to produce electron holes (positive electronic defects), as shown in Eq. 14 using the Kröger-

Vink notation [309].  

 

 (14) 

 

An equivalent circuit for a cell involving a MIEC electrolyte under open circuit 

conditions is represented in Fig. IV-5, assuming similar behaviours between n-type and p-type 

materials [320]. Here Eth represents the electromotive force or theoretical Nernst potential, 

, ,  and  the partial oxygen ion and electronic conductivities and resistances of 

the electrolyte, respectively;  is the polarisation resistance of the electrodes and  the 

measured OCV.  
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Figure IV-5: Equivalent dc circuit describing a 

mixed conductor placed under an oxygen chemical 

potential gradient under open-circuit conditions [320]. 

 

One can define the oxygen-ion transference number  as:  

 

 (15) 

 

and the OCV or  as: 

 

 (16) 

  

As can be seen in Eq. 16, the OCV across a MIEC is strongly influenced by the 

electronic contribution to the total conductivity of the electrolyte, but is also related to the 

overpotentials Rp developed at the interfaces of the cell [321-324]. 

This situation correlates well with the pO2 dependency measured for BIT07 in our 

study; the electronic contribution and its influence on the obtained OCVs might be therefore 

significant, and thus non-negligible in our case, especially considering the low thicknesses of 

our electrolyte layers (8 µm) [313, 325] and as can be seen from Eq. 16.  

These results are however not in agreement with those obtained by Delahaye et al. 

[126] or Letilly et al. [303], observing no variation in the conductivity of BIT07 against pO2 

down to 5 × 10
-5

 atm between 250 and 750°C. Also, OCV values close to the theoretical ones 

have been reported in the literature for cells involving BIT07 electrolyte, indicating a 

difference of behaviour between powder batches (here lab-scale produced powders vs. pre-

industrial batches in our case) and / or a strong influence of the powder processing steps.  

th Rion Rp

Rel

V
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1.2. EIS measurements 

For a better comparison, the BIT07-based cells using LaN and PrN cathodes, 

respectively, have been characterised by EIS at 700°C around the operating point 0.7 V. 

Typical Nyquist plots for these cells are reported in Fig. IV-6. From these measurements, the 

ohmic (Rs) and the polarisation (Rp) contributions to the total resistance of the cells have been 

quantified. The values of Rs, Rp and Rtot are shown in Table IV-4 and compared to the total 

ASR calculated from the IV curves (ASR(I-V)). 

 

 

 
 

Figure IV-6: Impedance spectra measured at 700°C and 0.7 V under air and dry H2 and fit result with the 

corresponding equivalent circuits for the cells involving a) LaN and b) PrN cathodes. 

  

In both cases, a good agreement between ASR(I-V) and Rtot has been found. Also, it can 

be observed that the main contribution to the total ASR of the cells comes from the series 

resistance Rs.  
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RpRs

5 kHz

500 Hz 50 Hz

5 Hz

0.05 Hz

5 kHz

500 Hz
50 Hz

5 Hz0.05 Hz

L Rs R1

CPE1

R2

CPE2

R3

CPE3

R4

CPE4

Element Freedom Value Error Error %

L Fixed(X) 0 N/A N/A

Rs Fixed(X) 0 N/A N/A

R1 Fixed(X) 0 N/A N/A

CPE1-T Fixed(X) 0 N/A N/A

CPE1-P Fixed(X) 1 N/A N/A

R2 Fixed(X) 0 N/A N/A

CPE2-T Fixed(X) 0 N/A N/A

CPE2-P Fixed(X) 1 N/A N/A

R3 Fixed(X) 0 N/A N/A

CPE3-T Fixed(X) 0 N/A N/A

CPE3-P Fixed(X) 1 N/A N/A

R4 Fixed(X) 0 N/A N/A

CPE4-T Fixed(X) 0 N/A N/A

CPE4-P Fixed(X) 1 N/A N/A

Data File:

Circuit Model File:

Mode: Run Simulation / Freq. Range (0,001 - 1000000)

Maximum Iterations: 100

Optimization Iterations: 0

Type of Fitting: Complex

Type of Weighting: Calc-Modulus

(a) (b)

Table IV-4:  

Rs, Rp and Rtot values for each cathode, obtained from the impedance spectra at 700°C and 0.7 V compared with 

the total ASR calculated from the I-V curves. 
 

Cathode 
Rs 

(Ω cm
2
) 

Rp 

(Ω cm
2
) 

Rtot 

(Ω cm
2
) 

ASR(I-V) 

(Ω cm
2
) 

LaN 1.3 1.11 2.41 2.39 

PrN 1.45 1.16 2.61 2.56 
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If we assume the series resistances as stemming only from the ohmic contribution of the 

electrolyte, Rs values around 0.17 Ω cm
2
 and 0.27 Ω cm

2
 should be obtained if one consider 

the conductivity values of BIT07 measured under air and dry H2 atmospheres, respectively. 

The Rs values are thus here almost one order of magnitude higher than expected. The first 

explanation for such large difference could arise from the internal resistance of the test setup 

itself, with a series resistance determined ab initio to be around 0.35 Ω cm
2
 at room 

temperature (measurement made with the two Pt current collection grids directly in contact). 

Also, contamination of the Pt grid on the anode side has been evidenced by EDX analysis, 

with a non-negligible proportion of Ba, In and Ti found (Fig. IV-7). which could significantly 

decrease the effectiveness of the current collecting.  

 

 

Figure IV-7: EDX point analysis on the current collecting Pt mesh. 

   

A second explanation could be related to a bad current collection, which can be first 

linked to an eventual non-perfect flatness of the cells. Also, an issue could be related to the 

relatively high electronic resistivity of the nickelates, which might not serve well as current 

collectors. For instance, Laberty et al. showed a diminution by a factor 6 of the series 

resistance at 800°C by replacing La2NiO4+  by LSC as a current collection layer, on standard 

YSZ / Ni | YSZ half-cells and composites La2NiO4+  / SDC cathodes [326]. This effect has 

however to be confirmed, as series resistance and subsequently total conductivity of BIT07 in 

agreement with the expected properties of this material have been measured by Brüll et al. on 

symmetrical cells involving PrN cathode, without the addition of current collection layers 

[327].  
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Finally, the quality of the cathode / electrolyte interface can also play a role in the Rs 

values, which could be in agreement with the relatively lower Rs value of the cell involving 

LaN considering its better interface with BIT07 compared to PrN (Fig. III-23a). If the 

bonding between the cathode and the electrolyte is not effective, the active cell area is 

decreased since no current is flowing through the delaminated areas. Besides a sharp increase 

of the activation loss of the cathode, the passing current from the anode to the cathode does 

not thus extend into the whole electrolyte area considering its low thickness, therefore 

increasing ohmic losses [328]. Even if reactivity tests did not show any chemical reaction 

between the nickelates and BIT07 at the sintering temperature of the cathodes, the presence of 

highly resistant interfacial phases cannot be excluded.  

A slightly lower polarisation resistance was found in the case of PrN compared to 

LaN, as can be observed in Fig. IV-8 (here the series resistance contributions have been 

removed from the impedance spectra for a better visibility).   

 

 
 

Figure IV-8: For the cells with LaN and PrN cathodes a) impedance spectra measured at 700°C and 0.7 V in air and 

dry H2 atmospheres with the Rs contribution removed and b) corresponding Bode plots. 

 

Besides, on the impedance spectra of the cell with LaN, four contributions to the 

polarisation resistance can be distinguished. From the Bode plot of the imaginary part (-Z”) as 

a function of the frequency, shown in Fig. IV-8b, the four approximate relaxation frequencies 

associated to each arc could be identified as being around 8300, 220, 13 and 0.2 Hz, 

respectively. The presence of an arc in the middle frequency range (around 10 Hz) has also 
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been assumed in the case of PrN, even if less visible, considering the similitude in the two cell 

architectures and the similar positioning in frequency of the peaks observed in the Bode plots.  

Each arc of the impedance spectra can be modelled by an equivalent circuit constituted 

by resistance - constant phase elements in parallel (R//CPE). Each resistance or CPE can be 

assigned to the resistance and capacitance associated with a specific rate-limiting 

electrochemical process.  

The data were fitted using the following equivalent circuits: L + Rs + (R1//CPE1) + 

(R2//CPE2) + (R3//CPE3) + (R4//CPE4) (used equivalent circuits and fit results are shown in 

Fig. IV-6). The notation 1 to 4 is assigned to the respective processes by increasing time 

constant. For each arc, the values of the fitted resistance R, the admittance  and the 

frequency power n can be used to calculate the relaxation or summit frequency  with 

Eq. 17 and the capacitance given at any frequency according to Eq. 18 [329].  

 

 (17) 

 (18) 

 

The equivalent capacity or Ceq corresponds to the capacity at the relaxation frequency or 

. Table IV-5 presents the results of the fits obtained from the impedance spectra of the 

two cells, with in both cases the value of Rs, Rp, fsummit and Ceq obtained for each arc. 

The inductance, not reported in the Table IV-5, was found to be around 2 × 10
-6

 H cm
-2

 

for each fit, corresponding to the “blank” value of the test setup.  

Considering now the deconvolution of the polarisation resistance of both electrodes, 

low value capacitances in the range 10
-6

 - 10
-4

 F cm
-2

 are typical of a double layer capacitance 

whereas larger capacitances (in the range 10
-3

 - 10
-1

 F cm
-2

) are usually linked to surface 

processes (oxygen adsorption, charge transfer, diffusion etc.) [330-331]. The arc at the highest 

frequencies, corresponding to process 1, is thus attributed to the ionic transfer at the electrode 

/ electrolyte interface for both cells, following the results obtained in other studies concerning 

nickelate cathodes [332-334]. 
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While for the cell with LaN the second process seems still to be related to the transfer of 

ions at the electrodes / electrolyte interface, in the case of PrN the capacity value would 

indicate more a contribution from electrode surface processes. In the literature, comparable 

capacitances values have been assigned either to a charge transfer reaction at the gas / 

electrode interface, as suggested by Mauvy et al. [332] or more generally to charge transfer 

processes [335], i.e. the dissociative adsorption of molecules at the electrode surface [332, 

334-336], the transport of oxygen species at the TPB [335] or gas diffusion [334-335].  

No strict conclusion can nonetheless be made regarding the processes 2 and 3 without 

any complementary experiments. Study of the two electrodes separately on symmetrical cells 

or variations of parameters such as temperature, water vapour pressure in the anode side or 

pO2 in the cathode side would help to deconvolute the spectra [335, 337], but have not been 

performed in the frame of this work.  

The capacitance observed for the lowest frequency process (process 4) is larger than 1. 

A capacitance of this magnitude is not ascribable to interfacial capacitance or adsorption on 

surfaces but rather to an electrode bulk process [329, 338]. So far, only two bulk processes 

have been reported to give such high capacitances values [336]. The first one is called a 

“chemical capacitance” and is related to the change of the chemical composition of the 

electrode material when the electrode potential is varied, as for instance a modification in the 

oxygen non-stoichiometry [339]. The second process that could originate high capacity values 

is the gas conversion, observed when experiments are performed in a test setup where the 

Table IV-5:  

fsummit, Ceq and R obtained for each contribution obtained by fitting the impedance spectra recorded at 700°C and 

0.7 V, for the two cells BIT07 / Ni | BIT07 | LaN and BIT07 / Ni | BIT07 | PrN. 
 

 
LaN PrN 

 
f summit 

(Hz) 

Ceq 

(F cm
-2

) 

R 

(Ω cm
2
) 

f summit 

(Hz) 

Ceq 

(F cm
-2

) 

R 

(Ω cm
2
) 

 

/ / 1.3 / / 1.45 

 

11152 9 × 10
-5

 0.15 8714 3 × 10
-5

 0.39 

 

260 7 × 10
-4

 0.76 228 1 × 10
-3

 0.56 

 

16 8 × 10
-2
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-1

 0.06 
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working and reference electrodes are located in different atmospheres [338]. This comes from 

a change of the gas composition in the vicinity of the electrode when the current is changed, 

leading to a variation of the Nernst potential. As our measurements have been performed 

under polarisation, the current modulation around the operating point 0.7 V, leading to a 

modulation of the gas composition, could originate this arc.  

1.3. Post-test analyses 

After the electrochemical test, both LaN and NdN cathode layers kept their adherence to 

the half-cell while PrN was partly delaminated, some parts of the cathode remaining attached 

to the current collection grid. 

 Observations on the polished cross-sections by SEM (Fig. IV-9) revealed a generally 

good quality of the half-cells, with thin and dense electrolyte layers of thicknesses around 8 

µm, further assessing the reproducibility of the half-cell elaboration process.  

 

 
 

Figure IV-9: BSE SEM micrographs of polished cross-sections for the cells a) BIT07 / Ni | BIT07 | LaN, b) 

BIT07 / Ni | BIT07 | NdN and c) BIT07 / Ni | BIT07 | PrN after test. 

 

Both LaN and NdN cathodes showed satisfying microstructures, with sufficient 

porosities and thicknesses (25 - 30 µm). The very low performance obtained with NdN 

appears thus not linked to the quality of the cell microstructure, further going in the direction 
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of a problem with the batch of powder used. Note that in this case the interface BIT07 / LaN 

seems to have deteriorated during testing or cell demounting (Fig. IV-9a).  

Concerning PrN, the cathode appeared cracked and delaminated after test, as can 

be seen in Fig. IV-9c. A bad bonding with BIT07 electrolyte was already observed on as-

prepared cells, linking this high deterioration of the layer to the stress and constraints applied 

by the current collection system. In terms of microstructure, the best cathode / electrolyte 

couple is NdN / BIT07. EDX analyses by mean of linescan, point analyses and element 

mapping have been performed for the three cathodes on cells before and after testing. In the 

three cases, no diffusion of elements could be observed. As an example, results of the 

mapping concerning the cathode lanthanide element are shown in Fig. IV-10.  

 

 

Figure IV-10: Results of the element mapping (here lanthanide element shown) for the 

cells after testing involving a) LaN, b) NdN and c) PrN cathodes. 
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1.4. Comparative studies of BIT07 / Nickelates with reference couples  

The BIT07 / LSCF couple appeared in the literature as promising for IT-SOFC 

applications [249-250, 253-254]. In order to estimate the feasibility of the BIT07 / nickelates 

association in comparison to more standard cathode materials and to better compare our 

results with the available data, a complete cell BIT07 / NiO | BIT07 | LSCF has been prepared 

and tested. The cathode layer has been sintered at 1050°C for 6 hours following the optimised 

conditions of process proposed by Letilly et al. on LSCF │ BIT07 │ LSCF symmetrical cells 

[250]. The performance of the produced cell has been compared to the results obtained for the 

best cell of this series of tests, i.e. the cell using LaN as cathode. I-V and power density 

characteristics for these two cells are shown in Fig. IV-11. In addition, Fig. IV-12 compares 

the impedance spectra of the two cells recorded at 700°C and 0.7 V, with the corresponding 

Bode plots. 

 
 

 

Figure IV-11: I-V curves and power densities under dry H2 at 700°C for the cells BIT07 / 

Ni | BIT07 | LaN and BIT07 / Ni | BIT07 | LSCF. 
 

 

0

20

40

60

80

100

120

140

160

180

200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4

P
o

w
er

 d
en

si
ty

  
(m

W
 c

m
-2

)

P
o
te

n
ti

a
l 
(V

)

Current density (A cm-2)

LaN

LSCF



Chapter IV: Electrochemical characterisation of cells 
 

 

148 

 

Figure IV-12: For the cells with LaN and LSCF cathodes a) impedance spectra measured at 700°C and 0.7 V 

under air and dry H2 and b) corresponding Bode plots. 

 

Electrochemical results obtained on cells with LaN or LSCF cathodes in terms of 

OCV, power densities, Rtot, Rs and Rp can be found in Table IV-6. These results are compared 

to a reference button cell BIT07 / Ni (50 : 50 Wt%) | BIT07 | LSCF (effective cell area 0.2 

cm
2
, electrolyte thickness 11 µm, cathode thickness around 10 µm) reported by Letilly et al. 

[249]. 

 

 

The cell using LSCF as a cathode exhibits higher performance than the cells involving 

the nickelates, with a power density at 0.7 V of 116 mW cm
-2

 (vs. 47 mW cm
-2

 for the cell 

with LaN) and a total ASR of 1.44 Ω cm
2
 (1.09 Ω cm

2
 from the series resistance and 0.35 Ω 

cm
2
 from the polarisation resistance) vs. 2.4 Ω cm

2 
(1.3 Ω cm

2
 from the series resistance and 

1.11 Ω cm
2
 from the polarisation resistance).  

It can be seen that the polarisation resistance value for the cell using LSCF cathode 

is 2.2 times lower than for the cell with LaN, and an improvement of Rs was observed, 
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Table IV-6:  

OCV, power density values, total ASR determined from the I-V curves and from EIS measurements (ASR(I-V) and 

Rtot respectively), Rs and Rp for the cells with LaN and LSCF cathodes compared with literature data. 
 

Cellule 
OCV 

(V) 

P(0.7V) 

(mW cm
-2

) 

Pmax 

(mW cm
-2

) 

ASR(I-V) 

(Ω cm
2
) 

Rtot 

(Ω cm
2
) 

Rs 

(Ω cm
2
) 

Rp 

(Ω cm
2
) 

 

LaN 
 

0.86 
 

47 
 

78 
 

2.39 
 

2.41 
 

1.3 
 

1.11 

LSCF 0.93 116 154 1.4 1.44 1.09 0.35 

from ref. [249] 1 336 398 0.63 0.68 0.3 0.38 
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probably due to the improved interface of LSCF with BIT07 due to the formation of a 

conductive perovskite-structured solid solution as a reactivity product between these two 

phases [132].  

Beside, a relative higher OCV has been obtained with the cell using LSCF as a cathode 

than values obtained with BIT07 / LnN-based cells. This can be related to the better activity 

of LSCF in association with BIT07 (lower Rp), leading to higher OCVs as described earlier 

(Eq. 15). 

The obtained performance appears however lower than those reported by Letilly et al. in 

[249] (336 mW cm
-2

 at 700°C and 0.7 V). This difference is nonetheless coming from the 

contribution of the series resistance, as similar Rp have been found. 

Powders produced at lab-scale using the same technique as in [249] and supplied by the 

IMN have been used for the shaping of the electrolyte layer in our cells, giving comparable 

series resistance values. The high Rs in our case seems thus neither related to the properties of 

the raw BIT07 powder, nor to the cathode / electrolyte interface, considering the low 

polarisation resistances obtained. High Rs might be thus coming mainly from current 

collection issues, further enhanced by a too low thickness of the cathode layer (around 10 µm) 

(Fig. IV-13). This is also confirmed by the similarities in the Rs values obtained for all our 

cells, regardless of the cathode used. 

 

 
 

Figure IV-13: BSE SEM micrograph on polished cross-section for the cell 

BIT07 / Ni | BIT07 | LSCF after test. 
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A substantial decrease of the ohmic losses could be achieved by the addition of a 

current collection layer, for example made of nickel on the anode side and LSM or LSC on 

the cathode side. For example, in the study from Letilly et al., gold grids attached with gold 

paste have been used as current collection layers [249], while LSC has been used by Lalanne 

et al. [255] or Laberty et al. [326] on the cathode side for cells involving nickelate cathodes. 

As a primary experimental feedback, BIT07 / nickelates-based cells are not enough 

performing for IT-SOFC applications, and LSCF seems to be a better cathode candidate to 

be directly associated with BIT07 electrolyte. Major improvements have thus to be done on 

the cathode side concerning the nickelates, especially regarding the quality of the interface 

with BIT07.  

2. Influence of the GDC barrier layer 

2.1. Case of PrN 

As seen in Chapter III, the addition of a Ce0.9Gd0.1O2-  (GDC) barrier layer in between 

the electrolyte and the cathode layers substantially improved the quality of the interface 

BIT07 / nickelates.  

The influence of this GDC layer on the electrochemical performance of the assemblies 

involving the three cathodes has been studied. The first part of this discussion will concern 

only the assemblies involving PrN.  

The I-V characteristics for the cells with PrN and GDC | PrN at the cathode side are 

compared in Fig. IV-14. The values of OCV, total Area Specific Resistance (ASR(I-V)), power 

density at 0.7 V and maximal power density for both cells are summarised in Table IV-7.  

 

Table IV-7:  

OCV, total ASR and power density values for the cells BIT07 / Ni | BIT07 | PrN and BIT07 / Ni | BIT07 | 

GDC | PrN. 

cathode 
OCV 

(V) 

ASR(I-V) 

(Ω cm
2
) 

P(0.7V) 

(mW cm
-2

) 

Pmax 

(mW cm
-2

) 

PrN 0.83 2.56 34 67 

GDC | PrN 1.03 1.34 174 200 
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Figure IV-14: I-V curves and power densities under dry hydrogen at 700°C for the cells 

BIT07 / Ni | BIT07 | PrN and BIT07 / Ni | BIT07 | GDC | PrN. 

 

The first observation concerns the higher value of the OCVs (here 1.03 V) compared 

to BIT07-based cells without the GDC interlayer. This effect is matching with the two 

hypotheses previously made to explain the low OCVs obtained for the first generation of 

cells.  

Namely:  

 1) GDC could act as a pure ionic electrolyte layer by blocking the electron holes in the 

case of a small p-type contribution in the conductivity of BIT07 in oxidising atmospheres, as 

commonly observed for bi-layered electrolytes [340-341]. The electron-blocking effect in the 

bilayer electrolytes is however not clear, as the electronic conductivity is determined by the 

spatial distribution of oxygen activity across the bilayer electrolyte. For instance, Kwon et al. 

suggested the reduced electronic conductivity of a YSZ / GDC bilayer as either coming from 

a larger supporting of the oxygen potential gradient by the YSZ layer or an enhanced blocking 

of electrons at the YSZ / GDC interface, leading to an appreciable drop in the oxygen activity 

and thus an extended electrolytic domain [340]. The figure case of an association between p-

type and n-type (in reducing atmospheres) conductor has to our best knowledge not been 

described in the literature.  

2) at the same time, the GDC layer could fill the eventual pin holes as it is deposited 

after the electrolyte sintering step (see Chapter III). 
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This OCV value remains however relatively below the theoretical one, in opposition to 

the results reported by IMN with an equivalent button cell [318], which can be related to a 

non-complete filling of the pin holes or a maintained electronic path if areas of the cathode 

remain in direct contact with BIT07 via the porosities of the GDC layer. The electron-

blocking effect of GDC on a p-type conducting electrolyte is also still to be elucidated.  

The higher OCV value combined with a division of the ASR by a factor 2 lead to a 

power density at 700°C and 0.7 V of 174 mW cm
-2

 and a maximal power density of 200 

mW cm
-2

. This cell has been characterised by EIS; the comparison of the Nyquist plots for 

the cells with and without the GDC layer is shown in Fig. IV-15a. The Rs contribution has 

been here removed for a better visibility. Values of Rs, Rp and total ASR Rtot are reported in 

Table IV-8. A good agreement between Rtot and ASR(I-V) has been found.  

 

Table IV-8:  

Rs, Rp and Rtot values for each cathode, obtained from the impedance spectra at 700°C and 0.7 V and compared 

with the total ASR calculated from the I-V curves. 
 

Cathode Rs 

(Ω cm
2
) 

Rp 

(Ω cm
2
) 

Rtot 

(Ω cm
2
) 

ASR(I-V)  

(Ω cm
2
) 

PrN 1.45 1.16 2.61 2.56 

GDC | PrN 1.1 0.29 1.39 1.34 
 

 

 

 
 

Figure IV-15: For the cells with PrN and GDC | PrN at the cathode side a) impedance spectra measured at 

700°C and 0.7 V under air and dry H2 with Rs contribution removed and b) corresponding Bode plots. 

 

A decrease of the series resistance of about 30% has been here observed, explained by 

an improved bonding between the cathode and the electrolyte when adding a GDC barrier 

layer. The major improvement concerns however the polarisation resistance.  
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In the case of GDC | PrN used in the cathode side, only two (R // CPE) circuits were 

necessary to obtain a satisfactory fit (the fit with three or four arcs giving unacceptably high 

error percentages). As can be seen in the Bode plot (Fig. IV-15b), the low frequency arc 

previously assigned to a chemical capacitance or a conversion polarisation remained of 

unchanged shape and summit frequencies and comparable capacitances values for the cells 

with and without the GDC layer have been obtained. The fit concerning the first arc gave a 

summit frequency around 2700 Hz for a capacitance value around 10
-4

 F cm
-2

 (fit results 

given in Table IV-11), corresponding thus to a double layer capacitance. The second and third 

processes observed in the cell without GDC with equivalent capacitances around 10
-3

 F cm
-2

 

and 10
-1

 F cm
-2

, respectively, were not observed in this case. This might come from an 

overlapping of processes considering the increased difficulty to deconvolute impedance 

spectra with decreased polarisation resistances. The corresponding resistance for this first arc 

was found to be 0.14 Ω cm
2
 compared to 1.01 Ω cm

2
 (sum of processes 1-3) without GDC, 

which corresponds to a reduction of the total polarisation resistance by a factor 4.  

However, this performance appeared lower than the one reported by Ferchaud et al. 

[260] with a cell YSZ / Ni | YSZ | GDC | Pr2NiO4+ , the GDC and Pr2NiO4+  layers being 

prepared under similar conditions (apart from a lower sintering temperature of the GDC 

layer), without additional current collection layer (maximal power density of 300 mW cm
-2

 at 

600°C). Rs and Rp values around 0.5 and 0.4 Ω cm
2
, respectively, have been reported at 

600°C for this “equivalent” cell using YSZ electrolyte [260]. While the polarisation resistance 

obtained in the present work can be considered as comparable with the value reported in ref. 

[260], despite the difference in temperature, we observe again that the main limitation of the 

performance of our cells stems from the ohmic losses. 

Here can thus be highlighted the benefit of the use of a GDC barrier layer in between 

BIT07 and PrN cathode.  

2.2. Comparison between the three nickelates 

I-V and power density characteristics for the three cathodes when associated with a 

GDC barrier layer are plotted in Fig. IV-16. As for the previous cells, the values of OCV, total 

Area Specific Resistance (ASR(I-V)), power density at 0.7 V (P(0.7V)) and maximal power 

density are reported for each cathode in Table IV-9. 
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Figure IV-16: I-V curves and power densities under dry H2 at 700°C for the cells BIT07 / Ni | 

BIT07 | GDC | LnN with Ln = La, Nd and Pr. 

 

In this series of measurements, the best performance has been obtained with GDC | PrN. 

As for the previous series of tests, the performance of the cell involving NdN was 

significantly lower, and although no previous electrochemical data have been found in the 

literature on the association of NdN with GDC, these results are still assumed to be related to 

the quality of the batch of powder. The total ASR values decreased by around 20, 60 and 50% 

for La, Nd and PrN, respectively, when adding the GDC barrier layer. In all cases, the GDC 

layer has been seen as having a beneficial effect on the value of the OCV. 

The values of Rs and Rp obtained from EIS measurements at 700°C and 0.7 V for the 

three GDC | LnN cells are given in Table IV-10. The obtained Rtot were in the three cases in 

good agreement with the ASR(I-V) values. The recorded impedance spectra are shown in Fig. 

IV-17. 
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Table IV-9:  

OCV, total ASR and power density values for the cells BIT07 / Ni | BIT07 | GDC | LnN (Ln = La, Nd, Pr). 
 

cathode 
OCV 

(V) 

ASR(I-V) 

(Ω cm
2
) 

P(0.7V) 

(mW cm
-2

) 

Pmax 

(mW cm
-2

) 

GDC | LaN 1.08 1.9 123 141 

GDC | NdN 1.07 3.99 59 68 

GDC | PrN 1.03 1.34 174 200 
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Table IV-10: 

Rs, Rp and Rtot (ASREIS)values for each cathode obtained from the impedance spectra at 700°C and 0.7V and 

compared with the total ASR calculated from the I-V curves. 
 

Cathode 
Rs 

(Ω cm
2
) 

Rp 

(Ω cm
2
) 

Rtot 

(Ω cm
2
) 

ASR(I-V) 

(Ω cm
2
) 

     

GDC | LaN 1.44 0.54 2 1.9 

LaN 1.3 1.11 2.41 2.39 

GDC | NdN 2.7 0.96 3.66 3.99 

NdN / / / 13.4 

GDC | PrN 1.1 0.29 1.39 1.34 

PrN 1.45 1.16 2.61 2.56 
 

 

 
 

 

Figure IV-17: Impedance spectra measured at 700°C and at 0.7 V and equivalent circuits for the cells BIT07 / 

Ni | BIT07 | LnN with Ln = a) LaN, b) NdN and c) PrN. 
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The fit results in terms of summit frequency, equivalent capacitance and polarisation 

resistance corresponding to each process and for each GDC | LnN couple can be found in 

Table IV-11. The values for the corresponding cells without the GDC layer are given for 

comparison. 

 

 

For the cells involving LaN, a slightly higher Rs value is observed when adding the 

GDC layer; this may indicate that either LaN is better bonded with BIT07 than with GDC or 

confirms that the high series resistance is more related to problems of current collection 

(insufficient electronic conductivity of the material, test setup, flatness of the cells…). As for 

the cell with GDC | PrN, a substantial decrease of the polarisation resistance has been 

observed. The impedance spectrum was here fitted with three R // CPE circuits. In this case, 

the highest frequency contribution is maintained compared to the cell with GDC, with 

comparable polarisation resistance, as for the lowest frequency one. The second and third 

processes observed for LaN alone seem now to overlap. An intermediate equivalent 

capacitance value of 10
-3

 F cm
-2

 indicates a contribution from surface processes in this case. 

The resistance of this arc was found to be around 0.2 Ω cm² for GDC | LaN, compared to 

0.88 Ω cm² for the sum of processes 2 and 3 in the case of LaN alone. This improvement 

Table IV-11:  

Summit frequencies, equivalent capacities and resistances obtained for each contribution after fitting of the 

impedance spectra recorded at 700°C and 0.7 V for the three cells BIT07 / Ni | BIT07 | GDC | LaN, BIT07 / Ni | 

BIT07 | GDC | NdN and BIT07 / Ni | BIT07 | GDC | PrN, compared with the fit results of the cells BIT07 / Ni | 

BIT07 | LaN and BIT07 / Ni | BIT07 | PrN. 

 
 Rs R1 // CPE1 R2 // CPE2 R3 // CPE3 R4 // CPE4 

GDC | LaN 

f summit (Hz) / 11434 79.51 0.17 / 

Ceq (F cm
-2

) / 8 × 10
-5

 9 × 10
-3

 7 / 

R (Ω cm
2
) 1.44 0.17 0.20 0.17 / 

LaN 

f summit (Hz) / 11152 260 16 0.12 

Ceq (F cm
-2

) / 9 × 10
-5

 7 × 10
-4

 8 × 10
-2

 17 

R (Ω cm
2
) 1.3 0.15 0.76 0.12 0.08 

GDC | NdN 

f summit (Hz) / 12777 262 84 0.38 

Ceq (F cm
-2

) / 2 × 10
-5

 1 × 10
-3

 4 × 10
-2

 1.49 

R (Ω cm
2
) 2.7 0.53 0.55 0.04 0.21 

GDC | PrN 

f summit (Hz) / 2694 0.13 / / 

Ceq (F cm
-2

) / 2 × 10
-4

 8 / / 

R (Ω cm
2
) 1.1 0.14 0.15 / / 

PrN 

f summit (Hz) / 8714 228 21 0.10 

Ceq (F cm
-2

) / 3 × 10
-5

 1 × 10
-3

 1 × 10
-1

 10.3 

R (Ω cm
2
) 1.45 0.39 0.56 0.06 0.15 
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cannot however be unambiguously attributed to an improvement of the quality of the 

electrolyte / cathode interface (a better bonding). 

Finally, concerning GDC | NdN, a fairly high series resistance of 2.7 Ω cm² indicates 

an important problem of current collection, if one considers as comparable the different half-

cells of this series of tests and the apparently good quality of the GDC | NdN interface (see 

Chapter III, Fig. III-25b). Around 39% of the contribution to the polarisation resistance is 

assigned to the ionic transfer at the electrode / electrolyte interface and 44% to electrode 

surface processes (four contributions found in this case). The low frequency arc was also 

observed here, with capacitance and polarisation resistances values in the same order of 

magnitude as for all the other cells tested.  

2.3. Post-test analyses 

After testing, no cracks or cathode delamination were observed for the cells BIT07 / 

NiO | BIT07 | GDC | LaN and BIT07 /NiO | BIT07 | GDC | NdN after removal from the test 

setup. Observations on SEM micrographs of polished cross-sections for these cells, shown in 

Fig. IV-18, do not evidence any major modification in the microstructure of the cells apart 

from the higher porosity due to the reduction of the anode. 
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Figure IV-18: BSE SEM micrographs of polished cross-sections for 

the cells a) BIT07 / Ni | BIT07 | GDC | LaN and b) BIT07 / Ni | 

BIT07 | GDC | NdN after test. 

 

Moreover, no diffusion of elements could be observed by EDX, as can be seen in Fig. 

IV-19. The small diffusion of Nd in GDC seen in Fig. IV-18b has been related to the non-

homogeneity of the GDC layer, e.g. surface porosities, confirmed by point analyses and 

element mapping. Post-test analyses for the cell involving PrN will be detailed in the next 

section. 

 

 
 

Figure IV-19: Results of the EDX measurement by linescan for the cells a) BIT07 / Ni | BIT07 | GDC | LaN 

and b) BIT07 / Ni | BIT07 | GDC | NdN after testing. 
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3. Endurance test 

Besides costs and performance, long-term stability is an important requirement for the 

commercial application of the SOFC technology.  

Tests presented in the previous part outlined temporarily GDC | PrN as the best cathode 

assembly to be associated to BIT07 in this study. An ageing test has thus been performed on 

this cell in galvanostatic mode at 700°C with a current density of 248 mA cm
-2 

(initial voltage 

0.7 V). The measurement has been run beyond 500 hours; the evolution of the cell voltage 

with the time is presented in Fig.IV-20. The voltage loss over the measurement time was 

around 95.5 mV, corresponding to an average extrapolated electrical degradation rate of 27% 

/ kh. 

 

I-V characteristics as well as impedance spectra at I = 248 mA cm
-2

 have been 

recorded at different ageing times and are plotted in Fig. IV-21 and IV-22, respectively. Note 

that in the case of the I-V characteristics only three curves for three different ageing times are 

shown for a better visibility.  

 
 

Figure IV-20: Voltage as a function of time at 700°C, 248 mA cm
-2

 for the cell BIT07 / Ni | BIT07 | GDC | PrN. 
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Figure IV-21: I-V curves and power densities under dry H2 at 700°C for the cell BIT07 / Ni 

| BIT07 | GDC | PrN at t = 0 h (red), t = 334 h (black) and t = 507 h (grey). 

 

 

Figure IV-22: Impedance spectra measured at 700°C and 248 mA cm
2
 for the cell 

BIT07 / Ni | BIT07 | GDC | PrN at different ageing times. 

 

Finally, the Table IV-12 assesses the evolution of the OCV, Rs, Rp and power densities 

of the cell as a function of time. 
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Table IV-12:  

Evolution of the OCV, Rs, Rp, P(0.7V) and Pmax with time for the cell BIT07 / Ni | BIT07 | GDC | PrN. 
 

Ageing time 
OCV 

(V) 

Rs 

(Ω cm
2
) 

Rp 

(Ω cm
2
) 

P(0.7V) 

(mW cm
-2

) 

Pmax 

(mW cm
-2

) 

t = 0 h 1.032 1.1 0.31 174 200 

t = 121 h 1.023 1.17 0.32 / / 

t = 164 h 1.023 1.21 0.31 / / 

t = 234 h 1.019 1.21 0.32 / / 

t = 281 h 1.017 1.24 0.32 / / 

t = 334 h 1.016 1.25 0.33 147  170  

t = 405 h 1.013 1.27 0.35 142  165  

t = 456 h 1.013 1.27 0.34 142  165  

t = 507 h 1.009 / / 139  162  

 

Impedance spectra fitting compared for three ageing times indicates that alongside the 

Rs increase, the Rp increase can be attributed mainly to the middle frequency contribution. 

Indeed, the polarisation resistance, summit frequency and capacity range of the low frequency 

arc, ascribed to bulk processes in section 1.2, remains fairly constant with ageing time, whilst 

the middle frequency contribution becomes more important. From 121 hours of ageing on, the 

middle frequency arc is accurately modeled by the deconvolution in two R // CPE 

contributions. Low and middle capacity value (~ 10
-5

 F cm
-2

 and 10
-2

 F cm
-2

, respectively) 

contributions, assigned to ionic transfer at the electrode / electrolyte interface(s) and electrode 

surface processes, respectively, were found.  

The values obtained by fitting the impedance spectra are reported in Table IV-13. 

Inductance values around 2 × 10
-6

 H cm
-2

, corresponding to the “blank” of the test bench, 

have been obtained for each fit. 

 

Table IV-13: 

Summit frequencies, equivalent capacities and resistances obtained for each contribution after fitting of the 

impedance spectra recorded at 700°C and 248 mA cm
-2

 for the cell BIT07 / Ni | BIT07 | GDC | PrN at ageing 

times t = 0 hours, t = 121 hours and t = 457 hours.  
 

 
T= 0 h T = 121 h T = 457 h 

 
fsummit 

(Hz) 

Ceq 

(F cm-2) 

R 

(Ω cm2) 

fsummit 

(Hz) 

Ceq 

(F cm-2) 

R 

(Ω cm2) 

fsummit 

(Hz) 

Ceq 

(F cm-2) 

R 

(Ω cm2) 

 

/ / 1.1 / / 1.16 / / 1.22 

 

2694 1.77 10-4 0.16 22657 7.34 10-5 0.075 26932 5.23 10-5 0.09 

 

0.13 8.09 0.15 21.2 4.92 10-2 0.11 17.9 6.36 10-2 0.12 

 

/ / / 0.12 8.89 0.15 0.12 8.56 0.15 

 

Rs

R1

CPE1

R2

CPE2

R3

CPE3
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After test, the cell appeared broken and important cracking was observed, both effects 

being located at the periphery of the cell (fig. IV-23).  

 

 

Figure IV-23: Picture of the cell 

BIT07 / Ni | BIT07 | GDC | PrN 

after ageing for 500 h at 700°C, 248 

mA cm
-2

 (anode side). 

 

 

This effect is probably related to the test configuration, as the surface of the cell is 

larger than the diameter of the alumina tubes. A part of the cell remains outside of the ceramic 

tube, and thus outside of the gas chambers. This creates stresses between the reduced part of 

the substrate and the part not in contact with gases. Propagation of the cracks to the centre of 

the cell might lead to leakages and therefore decreased OCV values. The anode in the region 

close to the interface (thickness ca. 50 µm) appeared dense, as shown in post-test SEM 

micrograph on polished cross-section shown in Fig. IV-24. This leads to a decrease of the 

TPBs, which are the chemically active areas of fuel gas oxidation, and could thus limit the 

performance of the cell.  

Agglomeration and particle coarsening of the metallic Ni is well established as being a 

predominant source of degradation of the SOFC performance [7, 342-345]. This phenomenon 

comes from the poor adhesion of Ni to the ceramic material and is mainly driven by the 

affinity of nickel to reduce its free surface energy under SOFC operating conditions [343]. 

The decrease of the specific surface area of Ni leads to a decrease of the number of catalytic 

active sites and therefore the increase of the polarisation resistance. The agglomeration of Ni 

leads also to a loss of the Ni-Ni contact and therefore a decrease in the conductivity of the 

cermet [343]. Since in general an increase of Rs correlates with the conductivity of the cells 

components [346], interfacial reactions and the contacting resistance [347-348], the increase 



Chapter IV: Electrochemical characterisation of cells 
 

 

163 

of the ohmic losses observed in our study could be partially related to a potential problem of 

nickel coarsening, although further tests are needed to confirm this assumption. 

  

 
 

Figure IV-24: BSE SEM micrograph of polished cross-section for the cell 

BIT07 / Ni | BIT07 | GDC | PrN after test. 

 

Other possible sources of anode ageing are the poor match of thermal expansion 

coefficients between BIT07 (12.5 × 10
-6

 K
-1

) [126] and metallic Ni (16 × 10
-6

 K
-1

) [349] as 

well as thermo-mechanical mechanisms arising from residual stresses created during cell 

elaboration [350-351]. 

The interface anode / electrolyte seems also to have degraded, which would lead to an 

increase of the current path, the blockage of the charge conduction and the elimination of 

reaction sites. The first consequence is a sharp increase of the activation polarisation due to 

the current concentration at the contacted areas of the anode, thus potentially related to the 

observed change in the double layer capacitance [328, 352], but also similarly an increase of 

the ohmic losses, as discussed in Section 1.2 [328].  

To our best knowledge, no data are available in the literature regarding the chemical 

stability of BIT07 with time under operation, even if no structural modification has been 

evidenced on BIT07 by Letilly et al. after two weeks at 700°C under wet (3% H2O) Ar / H2 

95% / 5% atmosphere [251]. 

Concerning the cathode side, the electrode remained here attached to the electrolyte 

(GDC layer) after testing, in opposition to the cell without GDC. The important cracking of 

the layer is mainly attributed to the stress applied when contacting the current collection (Pt) 

20 µm 2 µm
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grids, as similar microstructures have been observed for equivalent cells measured without 

ageing. Coarsening of the microstructure of the cathode due to sintering, a common cathode 

degradation mechanism, might have also contributed to the formation of the cracks [343], 

however impossible to confirm without further experiments. A slight modification of the 

interface with GDC (delamination) could also play a role in the degradation of the 

performance of the cell (low capacitance and Rs contributions as discussed earlier).  

As concerns the chemical stability of the cathode material, no evidence for an intrinsic 

degradation related to the use of nickelates has been found in the literature. Lalanne et al. 

reported a voltage degradation rate of 5% / kh over 800 hours of operation on YSZ-based 

standard half-cells, probably not due to cathode-related degradation effects [353]. To our best 

knowledge, no more data are available on long term experiments involving cells with this 

family of nickelates.  

EDX measurements on the polished cross-section of the cell after test also did not 

evidence any diffusion of elements, suggesting the absence of chemical reaction with GDC 

that could form insulating phases at the GDC / PrN interface. The result of an element 

mapping, here presenting Pr as an example, is given in Fig. IV-25.  

 

 

 

 

 

Figure IV-25: BSE SEM micrograph of polished cross-sections for the cell BIT07 / Ni | BIT07 | GDC | PrN 

after test and mapping result for the Pr element. 
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4. Towards the optimised BIT07-based half-cell 

4.1. Transfer to electrolyte powders supplied by MT 

As mentioned previously, no complete cells based on BIT07 powders from Marion 

Technologies could be obtained. The results presented here will concern cells using standard 

EMPA-based substrates on which an electrolyte layer of MT1 has been deposited.  

Fig. IV-26 compares the I-V characteristics of the cells BIT07 (EMPA) / Ni | BIT07 

(EMPA) | GDC (MT) | PrN (MT) and BIT07 (EMPA) / Ni | BIT07 (MT1) | GDC (MT) | PrN 

(MT). Table IV-14 summarises the corresponding values of OCV, total ASR(I-V) and power 

densities. 

 

 

 

 

Figure IV-26: I-V curves and power densities under dry H2 at 700°C for the cells BIT07 

(EMPA) / Ni | BIT07 (EMPA) | GDC | PrN (red) and BIT07 (EMPA) / Ni | BIT07 (MT1) | GDC 

| PrN. 
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Table IV-14:  

OCV, total ASR and power density values for the cells BIT07 (EMPA) / Ni | BIT07 (EMPA) | GDC (MT) | PrN 

(MT) and BIT07 (EMPA) / Ni | BIT07 (MT1) | GDC (MT) | PrN (MT). 
 

Powder 
OCV 

(V) 

ASR(I-V) 

(Ω cm
2
) 

P(0.7V) 

(mW cm
-2

) 

Pmax 

(mW cm
-2

) 

BIT07 EMPA 1.035 1.34 174 200 

BIT07 MT1 1.024 1.32 170 198 
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Equivalent performance has been found for these two cells. Impedance spectra 

have been recorded for the two cells at 700°C and 0.7 V (corresponding to current densities of 

248 and 242 mA cm
-2

 for the cells with EMPA and MT1 electrolytes, respectively) and are 

shown in Fig. IV-27.  

 

 
Figure IV-27: Impedance spectra measured at 700°C and at 0.7 V for the cells with electrolyte layer made of 

EMPA powder (red) and MT1 powder (blue). 

 

Unfortunately, the quality of the spectra for the cell with MT1 electrolyte did not 

allow any fit of the results. This has been explained by the presence of water in the cathode 

chamber, observed at the air exit, most likely coming from the direct combustion of hydrogen 

in air within the cathode chamber due to the presence of a crack in the middle of the cell, 

which probably appeared when closing the chamber. 

Similar Rs values have been observed for the two cells. Concerning the cell with MT1 

powder, the apparent diminishing of the low frequency contribution has been attributed to the 

improved gas diffusion due to the changing of the (Pt) current collection grid on the cathode 

side. Please note that this also applies for the results that will be presented in the next part. 

Concerning the first arc, its diminishing might be due to the use of a new screen printing ink 

for the elaboration of the cathode layer, leading to a better quality of this layer, as can been 

observed on the SEM micrograph of the cell after testing, shown in Fig. IV-28.  
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Figure IV-28: BSE SEM micrograph of polished cross-section for the 

cell BIT07 / Ni | BIT07 (MT1) | GDC | PrN after test. 

 

4.2. Introduction of an anode functional layer: preliminary results 

 As discussed in the previous chapter, both BIT07 (MT2) and BLITiMn (EMPA) have 

been combined with NiO and used as anode functional layers with MT1 as an electrolyte.  

The electrical characteristics of BLITiMn have been determined at IMN by EIS 

measurements performed on dense pellets ( 8 mm, thickness ca. 2 mm, density around 100% 

of the theoretical density) using gold paste electrodes under air and wet Ar / H2 95% / 5%, the 

corresponding measured conductivity values being shown in Fig. IV-29.  

As for BIT07, BLITiMn presents also the characteristics of a MIEC with p-type 

conductivity in oxidising atmospheres. A conductivity of around 2 × 10
-2

 S cm
-1

 has been 

determined for BLITiMn under reducing atmosphere, compared to 2.95 × 10
-3

 S cm
-1

 for 

MT1. 

The two cells have been prepared and measured; the results are compared to the ones 

obtained for the cell BIT07 (EMPA) / Ni | BIT07 (MT1) | GDC (MT) | PrN (MT). I-V curves 

and power densities for the three cells are plotted in Fig. IV-30.  

 

10 µm
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Figure IV-29: Arrhenius plots of the total conductivity of BLITiMn in air (black) 

and wet Ar / H2 95% / 5% (grey) determined by EIS. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. IV-31 shows the impedance spectra for the three cells, recorded at 700°C and 0.7 

V, with the ohmic contribution to the total resistance removed for a better comparison.  
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Figure IV-30: I-V curves and power densities under dry H2 at 700°C for the cells 

involving BIT07 (MT2) / Ni and BLITiMn (EMPA) / Ni AFL, compared with the 

standard cell. 
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Table IV-15 summarises the values of OCV, Rs and Rp determined by impedance, 

ASR(I-V) and power densities obtained for the three cells. In this case, the Rs and Rp values 

correspond to a direct reading of the impedance spectra due to the difficulty in obtaining a 

correct fit for the cell using BIT07 / Ni AFL.  

 

Table IV-15:  

OCV, Rs, Rp, total ASR and power density values for the cells without AFL, with BIT07 / Ni AFL and BLITiMn 

/ Ni AFL. 
 

cell 
OCV 

(V) 

Rs 

(Ω cm
2
) 

Rp 

(Ω cm
2
) 

ASR(I-V) 

(Ω cm
2
) 

P(0.7V) 

(mW cm
-2

) 

Pmax 

(mW cm
-2

) 

MT1 1.024 1.19 / 1.32 170 198 

BIT07 AFL 1.016 1.31 0.15 1.35 165 192 

BLITiMn AFL 0.959 1.89 0.52 2.33 72 86 

 

A first remark concerns the slightly lower OCV value measured for the cell involving 

BLITiMn in the AFL, which might come either from holes in the electrolyte or from the bad 

interface of the AFL with the BIT07 electrolyte layer (see Chapter III, Fig. III-36b). Higher 

series resistances have been measured for both cells involving an AFL. In the case of BIT07, 

it could be related to a too low porosity of the AFL leading to difficulties or delays in the 

reduction of NiO (see Chapter III, Fig. III-36a). Concerning the BLITiMn material, an issue 

could be the bad bonding between the AFL and the electrolyte layer, linked with the high 

series resistance (also correlated to a high polarisation resistance). SEM post-test analyses on 

 
Figure IV-31: a) Impedance spectra measured at 700°C and at 0.7 V for the cells involving BIT07 (MT2) / Ni 

and BLITiMn (EMPA) / Ni AFLs, compared with the standard cell BIT07 (EMPA) / NiO | BIT07 (EMPA) | 

GDC | PrN and b) corresponding Bode plots. 
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polished cross-section (Fig. IV-32) are in good agreement with this assumption. In addition, 

the functional layer itself appeared fairly porous (porosity around 47% after testing, 

determined by images analyses), with BLITiMn grains apparently not percolating. This might 

come from the low sinterability of the phase, as similar densification problems have been 

encountered with this material by Moser et al. [181].  

  

 

Figure IV-32: BSE SEM micrograph of polished cross-section for the cell BIT07 

(EMPA) / NiO | BLITiMn (EMPA) / NiO | BIT07 (MT2) | GDC (MT) | PrN (MT) 

after test. 

 

A comment regarding BLITiMn concerns the difficulty to measure its conductivity 

under pure hydrogen. Several attempts have been made at ICMCB to characterise the 

electrical conductivity of the phase using the four probes method both on dense pellets and 

cermets, leading in both cases to the bursting of the sample during heating up. The only 

explanation found to date is a problem of high volumetric changes of the phase during heating 

at low oxygen partial pressures.  

The last comment concerning this cell relates to the cathode side, showing important 

cracking and high densification. An ageing of the screen printing paste (for instance 

sedimentation) is assumed, as the cathode of this cell has been printed using the “old” paste, 

but has still to be confirmed. 

Comparable polarisation resistances have been obtained for the cells with and without 

BIT07-based anode functional layer. Even if the obtained Rs appeared slightly higher when 

20 µm 3 µm
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adding an AFL, comparable performance was obtained despite the improvements expected in 

the use of smaller size of the particles in the AFL (increased TPB length). The lower 

magnitude of the first arc of the impedance spectra using MT1 electrolyte and the new 

cathode screen printing paste was still observed. However, the cell with the BIT07 / Ni AFL 

exhibited a quite fast degradation, even if the total resistance of the cell actually decreased. As 

can be seen in Fig. IV-33a, impedance spectra at 700°C and 0.7 V recorded 20 hours later 

showed an important modification of both Rs and Rp. Indeed, Rs decreased down to 1.13 Ω 

cm
2
, which might be explained by a delayed reduction of NiO in the AFL due to the high 

density of the layer, while Rp rose to around 0.25 Ω cm
2
, corresponding to an increase of more 

than 60%. More visible in the Bode plots of the impedance for the two measurement times 

(Fig. IV-33b), the main cause of degradation stem from the middle frequency arc(s). As no 

satisfying fits were obtained, the determination of the origins of this fast ageing remained 

quite difficult.  

 

 
Figure IV-33: EIS measurements on the cell involving BIT07 / Ni AFL after 6 hours and 26 hours at 700 °C 

under air and dry H2 a) impedance spectra recorded at 0.7 V and b) corresponding Bode plots. 

 

 

Post-test analyses by SEM did not allow the identification of the source of the 

degradation, as the cell appeared of good quality after testing (Fig. IV-34) and no element 

diffusion has been found by EDX. 
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Figure IV-34: BSE SEM micrograph of polished cross-section for the cell 

BIT07 (EMPA) / NiO | BIT07 (MT2) / NiO | BIT07 (MT1) | GDC (MT) | PrN 

(MT) after test. 

 

5. Conclusions 

The subject of this chapter was the electrochemical characterisation of the BIT07 / 

nickelates-based cells produced as described in the Chapter III. 

A first series of tests concerning cells BIT07 (EMPA) / NiO | BIT07 (EMPA) | LnN 

(MT) with Ln = La, Nd, Pr have been performed, and characteristics as OCV, I-V curves, 

power densities, total ASR, Rs and Rp have been determined for each cell. The first issue was 

the low OCV values (below 0.9 V compared to values expected above 1.2 V), which could be 

attributed either to a small p-type mixed conductivity of BIT07 depending on the 

processing conditions (microstructure) of the powder, defects such as microscopic cracks 

in the electrolyte layer or a bad cathode / electrolyte bonding. The best performance has been 

obtained for the cell involving LaN as a cathode, with a maximum power density of 78 mW 

cm
-2

 at 700°C. Besides the low OCVs, both Rs and Rp were determined as too high for an 

efficient operation for IT-SOFC, leading to the design of a second generation of cells. 

The second generation involved the addition of a thin (2 - 3 µm) GDC barrier layer, 

giving when associated with PrN a maximal power density of 200 mW cm
-2

 at 700°C. The 

improvement came first from higher OCV values, which might be due to the blocking of the 

electrons and / or the filling of the porosities of the electrolyte by the GDC layer, and / or the 

improvement of the cathode / electrolyte bonding. Also, a decrease of the total ASR was 

10 µm



Chapter IV: Electrochemical characterisation of cells 
 

 

173 

observed. A Rp value as low as 0.29 Ω cm
2
 has been obtained, the main limitation of the 

performance stemming from the high series resistance (above 1 Ω cm
2
). Such low polarisation 

resistance may indicate the problem of high Rs as coming from a bad current collection and 

the internal resistance of the test setup (contamination of the current collection grids). The cell 

has been operated at 700°C and 248 mA cm
-2

 under galvanostatic mode beyond 500 hours 

with a fairly high extrapolated degradation rate of 27% / kh.  

Besides, changing the electrolyte layer from EMPA to MT1 did not induce major 

changes in the performance, with series resistance remaining constant independently of the 

powder used in the electrolyte layer, indicating the reproducibility of our results. A small 

decrease of the polarisation resistance in the middle frequency range has been obtained, 

potentially coming from an improvement of the quality of the cathode layer (new ink).  

Finally, preliminary results were obtained on the influence of the addition of anode 

functional layers based on BIT07 (MT2) and the MIEC BLITiMn. None of them did improve 

the performance of the cells. Indeed, for the BLITiMn / Ni AFL, a significant increase of both 

Rs and Rp was attributed to the bad AFL / electrolyte interface, and for the BIT07 / AFL a fast 

degradation of the cell was observed. 
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Chapter V  

General conclusion and prospects 

 

 
 

 

Nowadays, main hurdles to the industrial deployment of the SOFC technology remain 

problems of costs and ageing. A decrease of the operating temperature is considered as a 

relevant approach to slow down certain thermally-activated degradation processes such as 

corrosion of metallic interconnects so that the lifetime of SOFC systems can be extended.  

However, the performance of the fuel cells based on classical ceramic materials (i.e. 

yttria stabilized zirconia (YSZ) as electrolyte, its corresponding cermet (Ni / YSZ) as anode 

and La1-xSrxMnO3 (LSM) as cathode) is sharply lowered at intermediate temperatures. The last 

decade saw thus the emerging of alternative materials, and particularly mixed ionic electronic 

conducting cathodes such as La1-xSrxCo1-ySryO3-  (LSCF). However, problems of 

thermomechanical constraints and chemical reactivity between LSCF and YSZ are 

encountered. 

This thesis proposed to study a new cathode / electrolyte assembly for IT-SOFC 

application, namely the perovskite phase BaIn0.3Ti0.7O2.85 (BIT07) as an electrolyte and the 

oxygen over-stoichiometric nickelates Ln2-xNiO4+  (LnN, with Ln = La, Nd, Pr) as cathodes. 

Indeed, a good compatibility between the two phases is awaited as both phases are perovskite-

structured (or derivating) and have compatible thermal expansion coefficients.  

The aim of this work was to associate these two innovative oxide materials in a planar 

anode-supported SOFC for an efficient operation in the intermediate temperature range, 

involving low cost shaping techniques. Moreover, industrial powders have been used in this 

project.  

Among the existing techniques, tape casting has been selected for the elaboration of the 

BIT07 (EMPA) / NiO (J.T. Baker
®
) (40 : 60 Wt%) anode substrate, as it is a low cost and 

industrially well-established process. The main stake of this process lies in the slurry 

formulation and requires a careful selection and an accurate control on the processing 

additives. In our case, the well-known MEK / Ethanol solvent mixture associated with a 
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standard PVB (Butvar
®
 B-98, Aldrich) binder system has been used. Environmental friendly 

plasticiser additives, type I Solusolv
®

 S-2075 (Solutia) and type II PEG400, were selected, and 

the Nuosperse
®
 FX-4086 used as a dispersing agent.  

In a first series of formulations, the influence of the drying conditions and the binder 

content on the cracking behaviour of the tapes has been studied using the binder : plasticisers 

ratio 2 : 1. The optimum binder content has been settled to 6 Wt%. However problems of 

reproducibility have been encountered. Tests with increased type I and type II plasticisers 

content to promote plastic deformation and stored stress in the binder polymer matrix, 

respectively, led to the determination of a recipe for anode substrates with increased 

plasticisers content up to a ratio binder : plasticiser of almost 1 to 1. This recipe has been 

validated with BIT07 powders from different suppliers. 

The pre-sintering conditions for the anode substrates have been optimised to be 1150°C 

for 6 hours, heating and cooling rates 1°C / min. The BIT07 electrolyte layer has been 

deposited by vacuum slip casting (VSC) and co-sintered at 1350°C for 9 hours (heating and 

cooling rates 1°C / min), giving thin (8 - 10 µm), dense and homogeneous electrolyte layers 

in a reproducible way. 

Three cathode materials, La1.95NiO4+  (LaN), Nd1.97NiO4+  (NdN) and Pr1.97NiO4+  

(PrN) have been deposited by screen printing on the produced half-cells. Good adherence 

between BIT07 and both LaN and NdN has been found, while PrN was easily 

delaminating.  

The first generation of BIT07 / NiO | BIT07 | LnN (with Ln = La, Nd, Pr) cells have 

been electrochemically tested, under dry hydrogen and air atmospheres. The best performance 

has been obtained for the cell involving LaN as a cathode, with a maximum power density of 

about 80 mW cm
-2

 at 700°C, nonetheless far below performance reported in the literature by 

Letilly et al. on button cell for the couple BIT07 / La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) (Pmax = 336 

mW cm
-2

) or by Lalanne et al. for the couple YSZ / NdN (Pmax > 500 mW cm
-2

) at the same 

temperature. Unacceptability high series resistance (Rs) values (> 1 Ω cm
2
) as well as too high 

polarisation resistances (Rp) have been measured. Note that the series resistance Rs corresponds 

to the ohmic losses, usually mainly originating from the electrolyte, and the polarisation 

resistance Rp corresponds to the resistance associated to the electrochemical processes at the 

electrodes and electrodes / electrolyte interfaces.  
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Beside, systematic low OCV values (< 0.9 V for a theoretical value above 1.2 V) at 

700°C have been obtained. Two main hypotheses explaining this issue have been formulated, 

namely potential microscopic defects in the electrolyte layers such as cracks or an electronic 

contribution to the total conductivity of BIT07. Measurements on dense BIT07 pellets 

performed by EIS for three different batches of powder showed a systematic slight diminishing 

of the conductivity of the phase with the pO2. Although the results seem strongly dependent on 

the processing conditions of the powder, they seem to indicate a small p-type conductivity of 

BIT07. This conclusion is consistent with the results obtained in this study regarding different 

assemblies involving BIT07, although the influence of leakages caused by defects (microscopic 

cracks) in the electrolyte layers is believed to also play a role. The results obtained for this 

series of tests highlighted an insufficient performing of the BIT07 / LnN assemblies at 

intermediate temperatures, leading to the design of a second generation with improved 

architecture. 

To improve the quality of the cathode / electrolyte interface, the addition of a thin (2 - 3 

µm) Ce0.9Gd0.1O2-  (GDC for Gadolinia Doped Ceria) buffer layer in between BIT07 and the 

three nickelates has been studied. The layer has been deposited on sintered half-cells by screen 

printing and sintered at 1350°C for 2 hours. The cathodes were subsequently screen-printed 

and sintered at the optimised sintering temperature of 1170°C for 1 hour.  

For the three cathodes, a significant improvement of the performance has been observed with 

the addition of a GDC barrier layer. Higher OCV values were obtained, explained both by a 

filling (at least partial) of the cracks in the electrolyte layer or an electrons-blocking effect by / 

of the layer. The best performance has been obtained for the cell BIT07 / Ni | BIT07 | GDC | 

PrN, with a maximal power density of 200 mW cm
-2

 at 700°C. A competitive polarisation 

resistance (0.29 Ω cm
2
) has been obtained for this cell, which corresponds to an improvement 

of a factor 4 compared to the cell without barrier layer, thus promising if compared to a cell 

involving the LSCF cathode (Rp = 0.35 Ω cm
2
). It proves thus that a GDC buffer layer is still 

needed irrespective of the initial expectation that a buffer layer might be avoided due to 

analogous crystalline structures between the BIT07 electrolyte and perovskite cathodes. 

Nevertheless, the advantage of releasing some thermomechanical constraints thanks to the 

thermal expansion coefficient matching between the three layers remains. 

This second generation of BIT07 based-cell has been tested under galvanostatic mode 

at 0.7 V (I = 248 mA cm
-2

) beyond 500 hours, with a fairly high average degradation rate of 
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27% / kh. Although several assumptions have been made to explain this degradation, further 

experiments are still needed for a better understanding of the ageing phenomena. 

Additional improvements of the cells architecture were attempted on the anode side by 

adding BIT07 (MT2) / NiO or BLITiMn (EMPA) / NiO 44 : 66 Wt% anode functional layers 

(AFL), casted by vacuum slip casting. Concerning the BIT07 / NiO AFL, thin (6 µm) and 

dense layers were obtained, with finer grains expected to increase the TPB length. Preliminary 

results showed however no improvement of the cell performance, due to a higher Rs 

associated to a fast degradation of the cell. Post-test analyses on this cell did not revealed any 

failure explaining this phenomena, and the reproducibility of the results has still to be assessed 

before giving any conclusion. BLITiMn / NiO AFL appeared thicker (18 µm), fairly porous 

(porosity above 45% after reduction), and the interface between the anode and the electrolyte 

layers appeared deteriorated. Performance was sharply reduced by adding this AFL, with an 

important increase of both Rs and Rp.  

From these results, further improvement of the performance could be obtained 

involving a better densification of the GDC layer, for instance by adding a sintering aid in the 

form of a cobalt nitrate salt. Promising results have been obtained by depositing the GDC layer 

by vacuum slip casting, but optimisations are still needed to decrease the cracking of both 

electrolyte and buffer layers during sintering. Optimisation of the sintering program of the 

three cathodes on GDC layer could also help further reducing the polarisation resistances, 

although the obtained Rp values are already quite low.  

 A general issue concerning the electrochemical results for all the cells in this study has 

been the high values of the series resistances (above 1 Ω cm
2
 for all the cells), significantly 

detrimental for the cells performance. These values, not explainable by the ohmic contribution 

of the electrolyte only, are related to the internal resistance of the setup and current collection 

issues. Adding current collection layers seems thus here mandatory, as the low electrical 

conductivity of the nickelates cathodes may here limits the current collection, and 

modifications of the test rig are also foreseen. 

Besides, increasing the porosity of the anode substrates to improve the gas diffusion by 

using a pore-forming agent has been attempted. Jellified starch has been selected and used in 

the slurries formulations. Crack-free tapes containing 2 Wt% and 4 Wt% of jellified starch 

were obtained with BIT07 (batch MT1) powders by modifying the recipe (higher binder 

content). The porosity of the substrates increased from 8% to 25% (before reduction) when 

adding 4 Wt%. However, no complete cells were obtained with substrates containing pore 
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forming agent due to the swelling of the anode substrates during pre-sintering. Optimisations 

of the slurry formulation, including the size of the raw powders here, remain thus to be done.  

Finally, the cell elaboration process has been successfully up-scaled at the anode 

substrate level, with increased slurry volume, and pre-sintered 11.4 × 11.4 cm
2
 substrates 

obtained. Here, a decrease of the plasticisers content was needed to obtain workable green 

tapes, indicating possibilities of further optimisations of the slurry formulations. The substrates 

were however breaking during the vacuum clip casting step, due to their non-perfect flatness 

and also to a too low mechanical strength. Preliminary promising results were obtained for 

small (4 × 4 cm
2
) BIT07 / NiO | BIT07 (MT1) half-cells produced by screen printing the 

electrolyte layer directly on green substrates, avoiding thus the problem of pre-sintered 

substrates breaking during the electrolyte coating step.  
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