14 research outputs found

    The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation

    Get PDF
    Despite a very complex structure, the sugar composition of the rhamnogalacturonan II (RG-II) pectic fraction is extremely conserved. Among its constituting monosaccharides is the seldom-observed eight-carbon sugar 3-deoxy-D-manno-octulosonic acid (Kdo), whose phosphorylated precursor is synthesized by Kdo-8-P synthase. As an attempt to alter specifically the RG-II structure in its sugar composition and assess the consequences on the function of RG-II in cell wall and its relationship with growth, Arabidopsis null mutants were sought in the genes encoding Kdo-8-P synthase. Here, the isolation and characterization of one null mutant for the isoform 1 (AtkdsA1-S) and two distinct null mutants for the isoform 2 of Arabidopsis Kdo-8-P synthase (AtkdsA2-V and AtkdsA2-S) are described. Evidence is provided that AtkdsA2 gene expression is preferentially associated with plantlet organs displaying a meristematic activity, and that it accounts for 75% of the mRNAs to be translated into Kdo-8-P synthase. Furthermore, this predominant expression of AtKDSA2 over AtKDSA1 was confirmed by quantification of the cytosolic Kdo content in the mutants, in a variety of ecotypes. The inability to identify a double knockout mutant originated from pollen abortions, due to the inability of haploid pollen of the AtkdsA1- AtkdsA2- genotype to form an elongated pollen tube properly and perform fertilization

    Green light for the cell cycle

    No full text
    In recent years, considerable progress has been made in unraveling the control mechanisms operating on the plant cell cycle and most of the key regulators have now been identified, including cyclin-dependent kinases (CDKs), cyclins, CDK-inhibitory proteins, the WEE kinase and proteins of the retinoblastoma-related protein (RBR)/E2F/DP pathway. The review discusses recent developments in our understanding of the plant cell cycle machinery and highlights the role of the cell cycle in plant development

    Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis

    Get PDF
    Genome integrity is continuously threatened by external stresses and endogenous hazards such as DNA replication errors and reactive oxygen species. The DNA damage checkpoint in metazoans ensures genome integrity by delaying cell-cycle progression to repair damaged DNA or by inducing apoptosis. ATM and ATR (ataxia-telangiectasia-mutated and -Rad3-related) are sensor kinases that relay the damage signal to transducer kinases Chk1 and Chk2 and to downstream cell-cycle regulators. Plants also possess ATM and ATR orthologs but lack obvious counterparts of downstream regulators. Instead, the plant-specific transcription factor SOG1 (suppressor of gamma response 1) plays a central role in the transmission of signals from both ATM and ATR kinases. Here we show that in Arabidopsis, endoreduplication is induced by DNA double-strand breaks (DSBs), but not directly by DNA replication stress. When root or sepal cells, or undifferentiated suspension cells, were treated with DSB inducers, they displayed increased cell size and DNA ploidy. We found that the ATMā€“SOG1 and ATRā€“SOG1 pathways both transmit DSB-derived signals and that either one suffices for endocycle induction. These signaling pathways govern the expression of distinct sets of cell-cycle regulators, such as cyclin-dependent kinases and their suppressors. Our results demonstrate that Arabidopsis undergoes a programmed endoreduplicative response to DSBs, suggesting that plants have evolved a distinct strategy to sustain growth under genotoxic stress

    Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana

    No full text
    In plants, the formation of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of isoprenoids, is compartmentalized: the mevalonate (MVA) pathway, which is localized to the cytosol, is responsible for the synthesis of sterols, certain sesquiterpenes, and the side chain of ubiquinone; in contrast, the recently discovered MVA-independent pathway, which operates in plastids, is involved in providing the precursors for monoterpenes, certain sesquiterpenes, diterpenes, carotenoids, and the side chains of chlorophylls and plastoquinone. Specific inhibitors of the MVA pathway (lovastatin) and the MVA-independent pathway (fosmidomycin) were used to perturb biosynthetic flux in Arabidopsis thaliana seedlings. The interaction between both pathways was studied at the transcriptional level by using GeneChip (Affymetrix) microarrays and at the metabolite level by assaying chlorophylls, carotenoids, and sterols. Treatment of seedlings with lovastatin resulted in a transient decrease in sterol levels and a transient increase in carotenoid as well as chlorophyll levels. After the initial drop, sterol amounts in lovastatin-treated seedlings recovered to levels above controls. As a response to fosmidomycin treatment, a transient increase in sterol levels was observed, whereas chlorophyll and carotenoid amounts decreased dramatically when compared with controls. At 96 h after fosmidomycin addition, the levels of all metabolites assayed (sterols, chlorophylls, and carotenoids) were substantially lower than in controls. Interestingly, these inhibitor-mediated changes were not reflected in altered gene expression levels of the genes involved in sterol, chlorophyll, and carotenoid metabolism. The lack of correlation between gene expression patterns and the accumulation of isoprenoid metabolites indicates that posttranscriptional processes may play an important role in regulating flux through isoprenoid metabolic pathways

    The benzene metabolite, hydroquinone and etoposide both induce endoreduplication in human lymphoblastoid TK6 cells

    No full text
    Both occupational exposure to the leukemogen benzene and in vitro exposure to its metabolite hydroquinone (HQ) lead to the induction of numerical and structural chromosome changes. Several studies have shown that HQ can form DNA adducts, disrupt microtubule assembly and inhibit DNA topoisomerase II (topo II) activity. As these are potential mechanisms underlying endoreduplication (END), a phenomenon that involves DNA amplification without corresponding cell division, we hypothesized that HQ could cause END. We measured END in the human lymphoblastoid cell line, TK6, treated with HQ (0ā€“20 Ī¼M) and etoposide (0ā€“0.2 Ī¼M) for 48 h. Etoposide was used as a positive control as it is a topo II poison and established human leukemogen that has previously been shown to induce END in Chinese hamster ovary cells. Both HQ and etoposide significantly induced END in a dose-dependent manner (Ptrendā€‰<ā€‰0.0001 and Ptrend = 0.0003, respectively). Since END may underlie the acquisition of high chromosome numbers by tumour cells, it may play a role in inducing genomic instability and subsequent carcinogenesis from HQ and etoposide. In order to further explore the cytogenetic effects of HQ and etoposide, we also examined specific structural changes. HQ did not induce translocations of chromosome 11 [t(11;?)] but significantly induced translocations of chromosome 21 [t(21;?)] and structural chromosome aberrations (SCA) (Ptrendā€‰=ā€‰0.0415 and Ptrend < 0.0001, respectively). Etoposide potently induced all these structural changes (Ptrendā€‰<ā€‰0.0001). The lack of an effect of HQ on t(11;?) and the reduced ability of HQ to induce t(21;?) and SCA, compared with etoposide, further suggests that HQ acts primarily as a topo II catalytic inhibitor rather than as a topo II poison in intact human cells

    Allelic mutant series reveal distinct functions for Arabidopsis cycloartenol synthase 1 in cell viability and plastid biogenesis

    No full text
    Sterols have multiple functions in all eukaryotes. In plants, sterol biosynthesis is initiated by the enzymatic conversion of 2,3-oxidosqualene to cycloartenol. This reaction is catalyzed by cycloartenol synthase 1 (CAS1), which belongs to a family of 13 2,3-oxidosqualene cyclases in Arabidopsis thaliana. To understand the full scope of sterol biological functions in plants, we characterized allelic series of cas1 mutations. Plants carrying the weak mutant allele cas1ā€“1 were viable but developed albino inflorescence shoots because of photooxidation of plastids in stems that contained low amounts of carotenoids and chlorophylls. Consistent with the CAS1 catalyzed reaction, mutant tissues accumulated 2,3-oxidosqualene. This triterpenoid precursor did not increase at the expense of the pathway end products. Two strong mutations, cas1ā€“2 and cas1ā€“3, were not transmissible through the male gametes, suggesting a role for CAS1 in male gametophyte function. To validate these findings, we analyzed a conditional CRE/loxP recombination-dependent cas1ā€“2 mutant allele. The albino phenotype of growing leaf tissues was a typical defect observed shortly after the CRE/loxP-induced onset of CAS1 loss of function. In the induced cas1ā€“2 seedlings, terminal phenotypes included arrest of meristematic activity, followed by necrotic death. Mutant tissues accumulated 2,3-oxidosqualene and contained low amounts of sterols. The vital role of sterols in membrane functioning most probably explains the requirement of CAS1 for plant cell viability. The observed impact of cas1 mutations on a chloroplastic function implies a previously unrecognized role of sterols or triterpenoid metabolites in plastid biogenesis
    corecore