10 research outputs found

    Multiple generations of grain aggregation in different environments preceded solar system body formation

    Get PDF
    Manuscript submitted to Proceedings of the National Academy of ScienceThe solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous (a-) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a-silicate grains called GEMS, believed to be carbon-free. Some have detectable isotopically anomalous a-silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1300K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a-silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ~450K, GEMS cannot have accreted in the hot solar nebula and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds.Portions of this work were performed at the Molecular Foundry and the Advanced Light Source at Lawrence Berkeley National Laboratory, which are supported by the Office of Science, Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231. HAI acknowledges funding by NASA’s Laboratory Analysis of Returned Samples and Emerging Worlds Programs (NNX14AH86G and NNX16AK41G). JPB acknowledges funding by NASA’s Cosmochemistry Program (NNX14AI39G). CF acknowledges funding by NASA’s Cosmochemistry Program (NNX14AG25G)

    Cometary Origin of the Zodiacal Cloud and Carbonaceous Micrometeorites

    Full text link
    The zodiacal cloud is a thick circumsolar disk of small debris particles produced by asteroid collisions and comets. Here, we present a zodiacal cloud model based on the orbital properties and lifetimes of comets and asteroids, and on the dynamical evolution of dust after ejection. The model is quantitatively constrained by IRAS observations of thermal emission, but also qualitatively consistent with other zodiacal cloud observations. We find that 85-95% of the observed mid-infrared emission is produced by particles from the Jupiter-family comets (JFCs) and <<10% by dust from long period comets. Asteroidal dust is found to be present at <<10%. We suggest that spontaneous disruptions of JFCs, rather than the usual cometary activity driven by sublimating volatiles, is the main mechanism that librates cometary particles into the zodiacal cloud. Our results imply that JFC particles represent \sim85% of the total mass influx at Earth. Since their atmospheric entry speeds are typically low (\approx14.5 km s1^{-1} mean for D=100-200 μ\mum with \approx12 km s1^{-1} being the most common case), many JFC grains should survive frictional heating and land on the Earth's surface. This explains why most micrometeorites collected in antarctic ice have primitive carbonaceous composition. The present mass of the inner zodiacal cloud at <<5 AU is estimated to be 1-2×10192\times10^{19} g, mainly in D=100-200 μ\mum particles. The inner zodiacal cloud should have been >104>10^4 times brighter during the Late Heavy Bombardment (LHB) epoch \approx3.8 Gyr ago, when the outer planets scattered numerous comets into the inner solar system. The bright debris disks with a large 24-μ\mum excess observed around mature stars may be an indication of massive cometary populations existing in those systems

    Mineralogy and petrology of comet 81P/wild 2 nucleus samples

    Get PDF
    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk

    A refractory inclusion returned by Stardust from comet 81P/Wild 2

    No full text
    Among the samples returned from comet 81P/Wild 2 by the Stardust spacecraft is a suite of particles from one impact track (Track 25) that are Ca-, Al-rich and FeO-free. We studied three particles from this track that range in size from 5.3 × 3.2 μm to

    Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples

    No full text
    The bulk of the comet 81P/Wild 2 (hereafter Wild 2) samples returned to Earth by the Stardust spacecraft appear to be weakly constructed mixtures of nanometer-scale grains, with occasional much larger (over 1 micrometer) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal, and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in comet Wild 2 requires a wide range of formation conditions, probably reflecting very different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and the absence of hydrous phases indicate that comet Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require radial transport in the early protoplanetary disk

    Elemental compositions of comet 81P/Wild 2 samples collected by Stardust

    No full text
    We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed (180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements

    Research article - Comet 81P/Wild 2 under a microscope

    Get PDF
    The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales

    The Composition of Comets

    No full text
    corecore