171 research outputs found

    Upper ocean manifestations of a reducing meridional overturning circulation

    Get PDF
    Most climate models predict a slowing down of the Atlantic Meridional Overturning Circulation during the 21st century. Using a 100year climate change integration of a high resolution coupled climate model, we show that a 5.3Sv reduction in the deep southward transport in the subtropical North Atlantic is balanced solely by a weakening of the northward surface western boundary current, and not by an increase in the southward transport integrated across the interior ocean away from the western boundary. This is consistent with Sverdrup balance holding to a good approximation outside of the western boundary region on decadal time scales, and may help to spatially constrain past and future change in the overturning circulation. The subtropical gyre weakens by 3.4Sv over the same period due to a weakened wind stress curl. These changes combine to give a net 8.7Sv reduction in upper western boundary transport. © 2012. American Geophysical Union. All Rights Reserved

    Insights into decadal North Atlantic sea surface temperature and ocean heat content variability from an eddy-permitting coupled climate model

    Get PDF
    An ocean mixed layer heat budget methodology is used to investigate the physical processes determining subpolar North Atlantic (SPNA) sea surface temperature (SST) and ocean heat content (OHC) variability on decadal-multidecadal timescales using the state-of-the-art climate model HadGEM3-GC2. New elements include development of an equation for evolution of anomalous SST for interannual and longer timescales in a form analogous to that for OHC, parameterization of the diffusive heat flux at the base of the mixed layer and analysis of a composite AMOC event. Contributions to OHC and SST variability from two sources are evaluated i) net ocean-atmosphere heat flux and ii) all other processes, including advection, diffusion and entrainment for SST. Anomalies in OHC tendency propagate anticlockwise around the SPNA on multidecadal timescales with a clear relationship to the phase of the Atlantic meridional overturning circulation (AMOC). AMOC anomalies lead SST tendencies which in turn lead OHC tendencies in both the eastern and western SPNA. OHC and SST variations in the SPNA on decadal timescales are dominated by AMOC variability because it controls variability of advection which is shown to be the dominant term in the OHC budget. Lags between OHC and SST is traced to differences between the advection term for OHC and the advection-entrainment term for SST. The new results have implications for interpretation of variations in Atlantic heat uptake in the CMIP6 climate model assessment

    Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave

    Get PDF
    The North Atlantic and Europe experienced two extreme climate events in 2015: exceptionally cold ocean surface temperatures and a summer heat wave ranked in the top ten over the past 65 years. Here, we show that the cold ocean temperatures were the most extreme in the modern record over much of the mid-high latitude North-East Atlantic. Further, by considering surface heat loss, ocean heat content and wind driven upwelling we explain for the first time the genesis of this cold ocean anomaly. We find that it is primarily due to extreme ocean heat loss driven by atmospheric circulation changes in the preceding two winters combined with the re-emergence of cold ocean water masses. Furthermore, we reveal that a similar cold Atlantic anomaly was also present prior to the most extreme European heat waves since the 1980s indicating that it is a common factor in the development of these events. For the specific case of 2015, we show that the ocean anomaly is linked to a stationary position of the Jet Stream that favours the development of high surface temperatures over Central Europe during the heat wave. Our study calls for an urgent assessment of the impact of ocean drivers on major European summer temperature extremes in order to provide better advance warning measures of these high societal impact events

    Spatial and Temporal Scales of Sverdrup Balance

    Get PDF
    Sverdrup balance underlies much of the theory of ocean circulation and provides a potential tool for describing the interior ocean transport from only the wind stress. Using both a model state estimate and an eddy-permitting coupled climate model, this study assesses to what extent and over what spatial and temporal scales Sverdrup balance describes the meridional transport. The authors find that Sverdrup balance holds to first order in the interior subtropical ocean when considered at spatial scales greater than approximately 5°. Outside the subtropics, in western boundary currents and at short spatial scales, significant departures occur due to failures in both the assumptions that there is a level of no motion at some depth and that the vorticity equation is linear. Despite the ocean transport adjustment occurring on time scales consistent with the basin-crossing times for Rossby waves, as predicted by theory, Sverdrup balance gives a useful measure of the subtropical circulation after only a few years. This is because the interannual transport variability is small compared to the mean transports. The vorticity input to the deep ocean by the interaction between deep currents and topography is found to be very large in both models. These deep transports, however, are separated from upper-layer transports that are in Sverdrup balance when considered over large scales

    Production of highly-polarized positrons using polarized electrons at MeV energies

    Full text link
    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-ZZ target. Positron polarization up to 82\% have been measured for an initial electron beam momentum of 8.19~MeV/cc, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.Comment: 5 pages, 4 figure

    Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea

    Get PDF
    Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies

    Re-emergence of North Atlantic subsurface ocean temperature anomalies in a seasonal forecast system

    Get PDF
    A high-resolution coupled ocean atmosphere model is used to study the effects of seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies on northern hemisphere winter climate. A 50-member control ensemble is integrated from 1 September 2007 to 28 February 2008 and compared with a parallel ensemble with perturbed ocean initial conditions. The perturbation consists of a density-compensated subsurface Atlantic temperature anomaly corresponding to the observed subsurface temperature anomaly for September 2010. The experiment is repeated for two atmosphere horizontal resolutions (~ 60 km and ~ 25 km) in order to determine whether the sensitivity of the atmosphere to re-emerging temperature anomalies is dependent on resolution. A wide range of re-emergence behavior is found within the perturbed ensembles. While the observations seem to indicate that most of the re-emergence is occurring in November, most members of the ensemble show re-emergence occurring later in the winter. However, when re-emergence does occur it is preceded by an atmospheric pressure pattern that induces a strong flow of cold, dry air over the mid-latitude Atlantic, and enhances oceanic latent heat loss. In response to re-emergence (negative SST anomalies), there is reduced latent heat loss, less atmospheric convection, a reduction in eddy kinetic energy and positive low-level pressure anomalies downstream. Within the framework of a seasonal forecast system the results highlight the atmospheric conditions required for re-emergence to take place and the physical processes that may lead to a significant effect on the winter atmospheric circulation

    Successive crystal structure snapshots suggest the basis for MHC class i peptide loading and editing by tapasin

    Get PDF
    MHC-I epitope presentation to CD8 + T cells is directly dependent on peptide loading and selection during antigen processing. However, the exact molecular bases underlying peptide selection and binding by MHC-I remain largely unknown. Within the peptideloading complex, the peptide editor tapasin is key to the selection of MHC-I-bound peptides. Here, we have determined an ensemble of crystal structures of MHC-I in complex with the peptide exchange-associated dipeptide GL, as well as the tapasin-associated scoop loop, alone or in combination with candidate epitopes. These results combined with mutation analyses allow us to propose a molecular model underlying MHC-I peptide selection by tapasin. The N termini of bound peptides most probably bind first in the N-terminal and middle region of the MHC-I peptide binding cleft, upon which the peptide C termini are tested for their capacity to dislodge the tapasin scoop loop from the F pocket of the MHC-I cleft. Our results also indicate important differences in peptide selection between different MHC-I alleles
    • 

    corecore