557 research outputs found

    Contract Aware Components, 10 years after

    Get PDF
    The notion of contract aware components has been published roughly ten years ago and is now becoming mainstream in several fields where the usage of software components is seen as critical. The goal of this paper is to survey domains such as Embedded Systems or Service Oriented Architecture where the notion of contract aware components has been influential. For each of these domains we briefly describe what has been done with this idea and we discuss the remaining challenges.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Simulation study for analysis of binary responses in the presence of extreme case problems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimates of variance components for binary responses in presence of extreme case problems tend to be biased due to an under-identified likelihood. The bias persists even when a normal prior is used for the fixed effects.</p> <p>Methods</p> <p>A simulation study was carried out to investigate methods for the analysis of binary responses with extreme case problems. A linear mixed model that included a fixed effect and random effects of sire and residual on the liability scale was used to generate binary data. Five simulation scenarios were conducted based on varying percentages of extreme case problems, with true values of heritability equal to 0.07 and 0.17. Five replicates of each dataset were generated and analyzed with a generalized prior (<b>g-prior</b>) of varying weight.</p> <p>Results</p> <p>Point estimates of sire variance using a normal prior were severely biased when the percentage of extreme case problems was greater than 30%. Depending on the percentage of extreme case problems, the sire variance was overestimated when a normal prior was used by 36 to 102% and 25 to 105% for a heritability of 0.17 and 0.07, respectively. When a g-prior was used, the bias was reduced and even eliminated, depending on the percentage of extreme case problems and the weight assigned to the g-prior. The lowest Pearson correlations between true and estimated fixed effects were obtained when a normal prior was used. When a 15% g-prior was used instead of a normal prior with a heritability equal to 0.17, Pearson correlations between true and fixed effects increased by 11, 20, 23, 27, and 60% for 5, 10, 20, 30 and 75% of extreme case problems, respectively. Conversely, Pearson correlations between true and estimated fixed effects were similar, within datasets of varying percentages of extreme case problems, when a 5, 10, or 15% g-prior was included. Therefore this indicates that a model with a g-prior provides a more adequate estimation of fixed effects.</p> <p>Conclusions</p> <p>The results suggest that when analyzing binary data with extreme case problems, bias in the estimation of variance components could be eliminated, or at least significantly reduced by using a g-prior.</p

    Genetic divergence in common bean genotypes from the IRAD gene bank: morpho-agronomic characteristics, fungal and bacterial disease resistance, and opportunities for genetic improvement

    Get PDF
    For successful plant breeding in any crop species, the importance of diversity in the available germplasm population is known and established. Thirty-two common bean (Phaseolus vulgaris) genotypes from the IRAD gene bank in Cameroon were evaluated for divergence in terms of their morpho-agronomic traits, fungal disease resistance, and bacterial disease resistance to assess the opportunity for genetic improvement of the crop. The trait associations were estimated using correlation coefficients and genotypes were classified into groups using cluster and principal component analyses. Seven qualitative and 16 quantitative traits comprising growth, phenological, yield, and disease variables were evaluated in this study. The qualitative markers revealed the degree of polymorphism among the 32 common bean genotypes. The number of phenotypic classes per character (Na) ranged from 2 to 18, with an average of 5.14. The expected gene diversity (He) ranged from 0.37 to 0.93 (mean = 0.56). The number of effective phenotypic classes (Ne) ranged from 1.82 to 14.22, with a mean of 3.85. An extensive range of variation was evident for the majority of traits, highlighting their utility for characterizing common bean germplasm. Many qualitative traits, including seed coat color, seed shape, and seed size, and also some quantitative traits of economic importance including seed yield, were found to be highly variable within the collection, with the MAC55 genotype displaying the highest yield (32.65 g per plant). Four genotypes, namely MAC55, BOA-5-1M6, FEB 192, and Banguem showed resistance to the two main common bean diseases, angular leaf spot and common blight. We detected highly significant correlations among several traits related to yield. A high broad-sense heritability was found for most of the quantitative traits. We carried out two-dimensional principal component analysis and used hierarchical clustering to group the analyzed germplasm according to their phenotypic similitudes. The evidence of agro-morphological diversity in the present collection and the identification of discriminant characters between the available germplasm through the use of PCA analysis have significant implications for establishing breeding schemes in common bean

    Limits on the high-energy gamma and neutrino fluxes from the SGR 1806-20 giant flare of December 27th, 2004 with the AMANDA-II detector

    Get PDF
    On December 27th 2004, a giant gamma flare from the Soft Gamma-ray Repeater 1806-20 saturated many satellite gamma-ray detectors. This event was by more than two orders of magnitude the brightest cosmic transient ever observed. If the gamma emission extends up to TeV energies with a hard power law energy spectrum, photo-produced muons could be observed in surface and underground arrays. Moreover, high-energy neutrinos could have been produced during the SGR giant flare if there were substantial baryonic outflow from the magnetar. These high-energy neutrinos would have also produced muons in an underground array. AMANDA-II was used to search for downgoing muons indicative of high-energy gammas and/or neutrinos. The data revealed no significant signal. The upper limit on the gamma flux at 90% CL is dN/dE < 0.05 (0.5) TeV^-1 m^-2 s^-1 for gamma=-1.47 (-2). Similarly, we set limits on the normalization constant of the high-energy neutrino emission of 0.4 (6.1) TeV^-1 m^-2 s^-1 for gamma=-1.47 (-2).Comment: 14 pages, 3 figure

    Calibration and Characterization of the IceCube Photomultiplier Tube

    Full text link
    Over 5,000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-inch diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.Comment: 40 pages, 12 figure

    On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    Get PDF
    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic

    Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector

    Get PDF
    The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well-understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of livetime, 234 neutrino candidates were selected with an expectation of 211 +/- 76.1(syst.) +/- 14.5(stat.) events from atmospheric neutrinos
    corecore