244 research outputs found
Repeated buckling of composite shear panels
Failures in service of aerospace structures and research at the Technion Aircraft Structures Laboratory have revealed that repeatedly buckled stiffened shear panels might be susceptible to premature fatigue failures. Extensive experimental and analytical studies have been performed at Technion on repeated buckling, far in excess of initial buckling, for both metal and composite shear panels with focus on the influence of the surrounding structure. The core of the experimental investigation consisted of repeated buckling and postbuckling tests on Wagner beams in a three-point loading system under realistic test conditions. The effects of varying sizes of stiffeners, of the magnitude of initial buckling loads, of the panel aspect ratio and of the cyclic shearing force, V sub cyc, were studied. The cyclic to critical shear buckling ratios, (V sub cyc/V sub cr) were on the high side, as needed for efficient panel design, yet all within possible flight envelopes. The experiments were supplemented by analytical and numerical analyses. For the metal shear panels the test and numerical results were synthesized into prediction formulas, which relate the life of the metal shear panels to two cyclic load parameters. The composite shear panels studied were hybrid beams with graphite/epoxy webs bonded to aluminum alloy frames. The test results demonstrated that composite panels were less fatigue sensitive than comparable metal ones, and that repeated buckling, even when causing extensive damage, did not reduce the residual strength by more than 20 percent. All the composite panels sustained the specified fatigue life of 250,000 cycles. The effect of local unstiffened holes on the durability of repeatedly buckled shear panels was studied for one series of the metal panels. Tests on 2024 T3 aluminum panels with relatively small unstiffened holes in the center of the panels demonstrated premature fatigue failure, compared to panels without holes. Preliminary tests on two graphite epoxy shear panels with small holes in the center showed no similar fatigue life degradation and no shift in failure mode. Further tests on the effect of holes are in progress
Intra- and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers
The concentration of eleven antibiotics (trimethoprim, oxytetracycline, ciprofloxacin, azithromycin, cefotaxime, doxycycline, sulfamethoxazole, erythromycin, clarithromycin, ofloxacin, norfloxacin), three decongestants (naphazoline, oxymetazoline, xylometazoline) and the antiviral drug oseltamivir’s active metabolite, oseltamivir carboxylate (OC), were measured weekly at 21 locations within the River Thames catchment in England during the month of November 2009, the autumnal peak of the influenza A[H1N1]pdm09 pandemic. The aim was to quantify the pharmaceutical response to the pandemic and compare this to drug use during the late pandemic (March 2010) and the inter-pandemic periods (May 2011). A large and small wastewater treatment plant (WWTP) were sampled in November 2009 to understand the differential fate of the analytes in the two WWTPs prior to their entry in the receiving river and to estimate drug users using a wastewater epidemiology approach. Mean hourly OC concentrations in the small and large WWTP’s influent were 208 and 350 ng/L (max, 2070 and 550 ng/L, respectively). Erythromycin was the most concentrated antibiotic measured in Benson and Oxford WWTPs influent (max = 6,870 and 2,930 ng/L, respectively). Napthazoline and oxymetazoline were the most frequently detected and concentrated decongestant in the Benson WWTP influent (1650 and 67 ng/L) and effluent (696 and 307 ng/L), respectively, but were below detection in the Oxford WWTP. OC was found in 73% of November 2009’s weekly river samples (max = 193 ng/L), but only in 5% and 0% of the late- and inter-pandemic river samples, respectively. The mean river concentration of each antibiotic during the pandemic largely fell between 17–74 ng/L, with clarithromycin (max = 292 ng/L) and erythromycin (max = 448 ng/L) yielding the highest single measure. In general, the concentration and frequency of detecting antibiotics in the river increased during the pandemic. OC was uniquely well-suited for the wastewater epidemiology approach owing to its nature as a prodrug, recalcitrance and temporally- and spatially-resolved prescription statistics
Scientific Opportunities with an X-ray Free-Electron Laser Oscillator
An X-ray free-electron laser oscillator (XFELO) is a new type of hard X-ray
source that would produce fully coherent pulses with meV bandwidth and stable
intensity. The XFELO complements existing sources based on self-amplified
spontaneous emission (SASE) from high-gain X-ray free-electron lasers (XFEL)
that produce ultra-short pulses with broad-band chaotic spectra. This report is
based on discussions of scientific opportunities enabled by an XFELO during a
workshop held at SLAC on June 29 - July 1, 2016Comment: 21 pages, 12 figure
Hydrocortisone therapy for patients with septic shock
Background Hydrocortisone is widely used in patients with septic shock even though a survival benefit has been reported only in patients who remained hypotensive after fluid and vasopressor resuscitation and whose plasma cortisol levels did not rise appropriately after the administration of corticotropin. Methods In this multicenter, randomized, double-blind, placebo-controlled trial, we assigned 251 patients to receive 50 mg of intravenous hydrocortisone and 248 patients to receive placebo every 6 hours for 5 days; the dose was then tapered during a 6-day period. At 28 days, the primary outcome was death among patients who did not have a response to a corticotropin test. Results Of the 499 patients in the study, 233 (46.7%) did not have a response to corticotropin (125 in the hydrocortisone group and 108 in the placebo group). At 28 days, there was no significant difference in mortality between patients in the two study groups who did not have a response to corticotropin (39.2% in the hydrocortisone group and 36.1% in the placebo group, P=0.69) or between those who had a response to corticotropin (28.8% in the hydrocortisone group and 28.7% in the placebo group, P=1.00). At 28 days, 86 of 251 patients in the hydrocortisone group (34.3%) and 78 of 248 patients in the placebo group (31.5%) had died (P=0.51). In the hydrocortisone group, shock was reversed more quickly than in the placebo group. However, there were more episodes of superinfection, including new sepsis and septic shock. Conclusions Hydrocortisone did not improve survival or reversal of shock in patients with septic shock, either overall or in patients who did not have a response to corticotropin, although hydrocortisone hastened reversal of shock in patients in whom shock was reversed. (ClinicalTrials.gov number, NCT00147004 [ClinicalTrials.gov] .)Peer reviewedPublisher PD
Use of IFNγ/IL10 Ratio for Stratification of Hydrocortisone Therapy in Patients With Septic Shock
Large clinical trials testing hydrocortisone therapy in septic shock have produced conflicting results. Subgroups may benefit of hydrocortisone treatment depending on their individual immune response. We performed an exploratory analysis of the database from the international randomized controlled clinical trial Corticosteroid Therapy of Septic Shock (CORTICUS) employing machine learning to a panel of 137 variables collected from the Berlin subcohort comprising 83 patients including demographic and clinical measures, organ failure scores, leukocyte counts and levels of circulating cytokines. The identified theranostic marker was validated against data from a cohort of the Hellenic Sepsis Study Group (HSSG) (n = 246), patients enrolled in the clinical trial of Sodium Selenite and Procalcitonin Guided Antimicrobial Therapy in Severe Sepsis (SISPCT, n = 118), and another, smaller clinical trial (Crossover study, n = 20). In addition, in vitro blood culture experiments and in vivo experiments in mouse models were performed to assess biological plausibility. A low serum IFNγ/IL10 ratio predicted increased survival in the hydrocortisone group whereas a high ratio predicted better survival in the placebo group. Using this marker for a decision rule, we applied it to three validation sets and observed the same trend. Experimental studies in vitro revealed that IFNγ/IL10 was negatively associated with the load of (heat inactivated) pathogens in spiked human blood and in septic mouse models. Accordingly, an in silico analysis of published IFNγ and IL10 values in bacteremic and non-bacteremic patients with the Systemic Inflammatory Response Syndrome supported this association between the ratio and pathogen burden. We propose IFNγ/IL10 as a molecular marker supporting the decision to administer hydrocortisone to patients in septic shock. Prospective clinical studies are necessary and standard operating procedures need to be implemented, particularly to define a generic threshold. If confirmed, IFNγ/IL10 may become a suitable theranostic marker for an urging clinical need
Use of IFNγ/IL10 Ratio for Stratification of Hydrocortisone Therapy in Patients With Septic Shock
Large clinical trials testing hydrocortisone therapy in septic shock have produced
conflicting results. Subgroups may benefit of hydrocortisone treatment depending on
their individual immune response. We performed an exploratory analysis of the database
from the international randomized controlled clinical trial Corticosteroid Therapy of Septic
Shock (CORTICUS) employing machine learning to a panel of 137 variables collected
from the Berlin subcohort comprising 83 patients including demographic and clinical
measures, organ failure scores, leukocyte counts and levels of circulating cytokines. The
identified theranostic marker was validated against data from a cohort of the Hellenic
Sepsis Study Group (HSSG) (n = 246), patients enrolled in the clinical trial of Sodium
Selenite and Procalcitonin Guided Antimicrobial Therapy in Severe Sepsis (SISPCT, n
= 118), and another, smaller clinical trial (Crossover study, n = 20). In addition, in vitro
blood culture experiments and in vivo experiments in mouse models were performed to
assess biological plausibility. A low serum IFNg/IL10 ratio predicted increased survival in
the hydrocortisone group whereas a high ratio predicted better survival in the placebo
group. Using this marker for a decision rule, we applied it to three validation sets and
observed the same trend. Experimental studies in vitro revealed that IFNg/IL10 was
negatively associated with the load of (heat inactivated) pathogens in spiked human blood
and in septic mouse models. Accordingly, an in silico analysis of published IFNg and
IL10 values in bacteremic and non-bacteremic patients with the Systemic Inflammatory
Response Syndrome supported this association between the ratio and pathogen burden.
We propose IFNg/IL10 as a molecular marker supporting the decision to administer
hydrocortisone to patients in septic shock. Prospective clinical studies are necessary
and standard operating procedures need to be implemented, particularly to define a
generic threshold. If confirmed, IFNg/IL10 may become a suitable theranostic marker for
an urging clinical need
Impacts of a sudden stratospheric warming on the mesospheric metal layers
We report measurements of atomic sodium, iron and temperature in the mesosphere and lower thermosphere (MLT) made by ground-based lidars at the ALOMAR observatory (69°N, 16°E) during a major sudden stratospheric warming (SSW) event that occurred in January 2009. The high resolution temporal observations allow the responses of the Na and Fe layers to the SSW at high northern latitudes to be investigated. A significant cooling with temperatures as low as 136 K around 90 km was observed on 22 − 23 January 2009, along with substantial depletions of the Na and Fe layers (an ~80% decrease in the column abundance with respect to the mean over the observation period). The Whole Atmosphere Community Climate Model (WACCM) incorporating the chemistry of Na, Fe, Mg and K, and nudged with reanalysis data below 60 km, captures well the timing of the SSW, although the extent of the cooling and consequently the depletion in the Na and Fe layers is slightly underestimated. The model also predicts that the perturbations to the metal layers would have been observable even at equatorial latitudes. The modelled Mg layer responds in a very similar way to Na and Fe, whereas the K layer is barely affected by the SSW because of the enhanced conversion of K+ ions to K atoms at the very low temperatures
Voronoi Tessellation Captures Very Early Clustering of Single Primary Cells as Induced by Interactions in Nascent Biofilms
Biofilms dominate microbial life in numerous aquatic ecosystems, and in engineered and medical systems, as well. The formation of biofilms is initiated by single primary cells colonizing surfaces from the bulk liquid. The next steps from primary cells towards the first cell clusters as the initial step of biofilm formation remain relatively poorly studied. Clonal growth and random migration of primary cells are traditionally considered as the dominant processes leading to organized microcolonies in laboratory grown monocultures. Using Voronoi tessellation, we show that the spatial distribution of primary cells colonizing initially sterile surfaces from natural streamwater community deviates from uniform randomness already during the very early colonisation. The deviation from uniform randomness increased with colonisation — despite the absence of cell reproduction — and was even more pronounced when the flow of water above biofilms was multidirectional and shear stress elevated. We propose a simple mechanistic model that captures interactions, such as cell-to-cell signalling or chemical surface conditioning, to simulate the observed distribution patterns. Model predictions match empirical observations reasonably well, highlighting the role of biotic interactions even already during very early biofilm formation despite few and distant cells. The transition from single primary cells to clustering accelerated by biotic interactions rather than by reproduction may be particularly advantageous in harsh environments — the rule rather than the exception outside the laboratory
Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies
- …