24 research outputs found

    Physiological Concentration of Exogenous Lactate Reduces Antimycin A Triggered Oxidative Stress in Intestinal Epithelial Cell Line IPEC-1 and IPEC-J2 In Vitro

    Get PDF
    Weaning triggers an adaptation of the gut function including luminal lactate generation by lactobacilli, depending on gastrointestinal site. We hypothesized that both lactobacilli and lactate influence porcine intestinal epithelial cells. In vivo experiments showed that concentration of lactate was significantly higher in gastric, duodenal and jejunal chyme of suckling piglets compared to their weaned counterparts. In an in vitro study we investigated the impact of physiological lactate concentration as derived from the in vivo study on the porcine intestinal epithelial cells IPEC-1 and IPEC-J2. We detected direct adherence of lactobacilli on the apical epithelial surface and a modulated F-actin structure. Application of lactobacilli culture supernatant alone or lactate (25 mM) at low pH (pH 4) changed the F-actin structure in a similar manner. Treatment of IPEC cultures with lactate at near neutral pH resulted in a significantly reduced superoxide-generation in Antimycin A-challenged cells. This protective effect was nearly completely reversed by inhibition of cellular lactate uptake via monocarboxylate transporter. Lactate treatment enhanced NADH autofluorescence ratio (F-cytosol/F-nucleus) in non-challenged cells, indicating an increased availability of reduced nucleotides, but did not change the overall ATP content of the cells. Lactobacilli-derived physiological lactate concentration in intestine is relevant for alleviation of redox stress in intestinal epithelial cells.Peer reviewe

    Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

    Get PDF
    Genetic influences on psychiatric disorders transcend diagnostic boundaries, suggesting substantial pleiotropy of contributing loci. However, the nature and mechanisms of these pleiotropic effects remain unclear. We performed analyses of 232,964 cases and 494,162 controls from genome-wide studies of anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette syndrome. Genetic correlation analyses revealed a meaningful structure within the eight disorders, identifying three groups of inter-related disorders. Meta-analysis across these eight disorders detected 109 loci associated with at least two psychiatric disorders, including 23 loci with pleiotropic effects on four or more disorders and 11 loci with antagonistic effects on multiple disorders. The pleiotropic loci are located within genes that show heightened expression in the brain throughout the lifespan, beginning prenatally in the second trimester, and play prominent roles in neurodevelopmental processes. These findings have important implications for psychiatric nosology, drug development, and risk prediction.Peer reviewe

    Efficiency comparison of automatic steering systems with manual steering during grassland harvesting based on process parameters of the tractor

    No full text
    Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI)Der Nutzen von automatischen Lenksystemen wurde bisher vor allem im Ackerbau untersucht. In der vorliegenden Studie soll daher der Nutzen zwischen manueller Lenkung (mL) und automatischer Lenkung (aL) in der Grünlandwirtschaft durch Feldversuche verglichen werden. Die Prozessparameter wurden aus CANund ISO-Bus der Zugmaschine während des Mähens, Wendens und Schwadens erfasst. Die größten Abweichungen zwischen mL und aL wurden im Bereich der Feldarbeitszeit beobachtet. Hier war die Bearbeitung mit aL im Mittel 42,6% während des Mähens und 30,0% während des Wendens langsamer als mit mL. Neben unterschiedlichen Fahrstrategien war dieser Umstand auf einen mangelhaften Wechsel von mL auf aL nach der Wende zurückzuführen. Im Gegensatz dazu konnte mit der aL während des Schwadens um 15,6% schneller gearbeitet werden als mit mL. Dies ist auf einen Wendevorgang mittels Schwalbenschwanzwende während mL zurückzuführen

    Comparing Two Intestinal Porcine Epithelial Cell Lines (IPECs): Morphological Differentiation, Function and Metabolism

    No full text
    The pig shows genetical and physiological resemblance to human, which predestines it as an experimental animal model especially for mucosal physiology. Therefore, the intestinal epithelial cell lines 1 and J2 (IPEC-1, IPEC-J2) - spontaneously immortalised cell lines from the porcine intestine - are important tools for studying intestinal function. A microarray (GeneChip Porcine Genome Array) was performed to compare the genome wide gene expression of IPECs. Different significantly up-regulated pathways were identified, like “lysosome”, “pathways in cancer”, “regulation of actin cytoskeleton” and “oxidative phosphorylation” in IPEC-J2 in comparison to IPEC-1. On the other hand, “spliceosome”, “ribosome”, “RNA-degradation” and “tight junction” are significantly down-regulated pathways in IPEC-J2 in comparison to IPEC-1. Examined pathways were followed up by functional analyses. ATP-, oxygen, glucose and lactate-measurement provide evidence for up-regulation of oxidative phosphorylation in IPEC-J2. These cells seem to be more active in their metabolism than IPEC-1 cells due to a significant higher ATP-content as well as a higher O2- and glucose-consumption. The down-regulated pathway “ribosome” was followed up by measurement of RNA- and protein content. In summary, IPEC-J2 is a morphologically and functionally more differentiated cell line in comparison to IPEC-1. In addition, IPEC-J2 cells are a preferential tool for in vitro studies with the focus on metabolism

    Analyses of important genes of the metabolism and oxygen-consumption.

    No full text
    <p>Important genes of the metabolism were analysed in both cell lines cultured on membranes for 10 days using microarray analyses and qPCR (A). PDHB (pyruvate dehydrognase subunit B) and CYC1 (cyctochrome C) are significantly down-regulated in the microarray and qPCR. SDH (succinate dehydrogenase subunit B) and HIF1a (hypoxia inducible factor 1a) are both significantly up-regulated in the microarray but not in qPCR. Furthermore, oxygen-consumption of both cell lines cultured on dishes or membranes for 10 days was examined. Both cell lines showed a significant higher O<sub>2</sub>-consumption on membranes (IPEC-1: 20.07 nmol/100 000 cells; IPEC-J2: 75.27 nmol/100 000 cells) in comparison to dishes (IPEC-1: 3.18 nmol/100 000 cells; IPEC-J2: 8.18 nmol/100 000 cells). At the same time, a significant higher oxygen-consumption was found in IPEC-J2 in comparison to IPEC1, which was independent of the culture support.</p

    Comparison of microarray data and qPCR.

    No full text
    <p>*p≤0.05;</p><p>**p≤0.01;</p><p>***p≤0.001</p><p>Important genes of the significantly regulated pathways shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0132323#pone.0132323.t002" target="_blank">Table 2</a> were analysed via qPCR. The microarry data are shown and two reference genes were used to illustrate significant differences between both cell lines. Asterisks indicate significant differences from IPEC-1.</p
    corecore