38 research outputs found

    Glutamate and Brain Glutaminases in Drug Addiction

    Get PDF
    Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo exposure to drugs of abuse, which are discussed in the context of the glutamate homeostasis theory of addiction. Recent findings from mouse models have shown that drugs induce changes in the expression profiles of key glutamatergic transmission genes, although the molecular mechanisms that regulate drug-induced neuronal sensitization and behavioral plasticity are not clear.This work was financially supported by Grants RD12/0028/0013 (JM) and RD12/0028/0001 (FRF) of the RTA RETICS network from the Spanish Health Institute Carlos III, Grant SAF2015-64501-R from the Spanish Ministry of Economy and Competitivity (to JM and JMM) and Excellence Grant CVI-6656 (Regional Andalusian government) (to JM)

    Ratones knock-out del receptor lpa1 de ácido lisofosfatídico presentan un acusado déficit de la isoenzima glutaminasa KGA (GLS) y una morfología alterada en las espinas dendríticas de hipocampo y corteza

    Get PDF
    Objectives: The objective of the present study was to utilize mice with knocked-down lysophosphatidic acid 1 (LPA1) receptor to ascertain changes in glutamatergic transmission that may help to explain part of the cognitive and memory deficits shown by these KO-LPA1 mice. Material & methods: A well characterized KO-LPA1 mouse strain was used as animal model and compared with wild-type (WT) and heterozygous animals. Expression studies were implemented by immunohistochemistry and Western analysis of mouse brain regions, real-time quantitative RT-PCR of GA isoforms, enzymatic analysis of regional GA activity and Golgi staining to assess dendritic spine morphology and density. Results: A strong reduction of KGA immunoreactivity was mostly revealed in cerebral cortex and hippocampus of KO-LPA1 mice versus WT and heterozygous animals. In contrast, neither mRNA levels nor enzyme activity were significantly altered in KO mice suggesting compensatory mechanisms for neurotransmitter Glu synthesis. Interestingly, Golgi staining of hippocampal and cortical neurons revealed a clear morphology change toward a less-mature undifferentiated spine phenotype, without changes in the total number of spines. Conclusions: The molecular mechanisms underlying KGA downregulation in null LPA1 mutant mice are unknown. However, LPA increases neuronal differentiation, arborization and neurite outgrowth of developing neurons, while Gln-derived Glu, through GA reaction, has been also involved in neuronal growth and differentiation. It is tempting to speculate that downregulation of KGA protein in KO-LPA1 mice induce morphological changes in dendritic spines of cortical and hippocampal neurons which, in turn, may account for memory and cognitive deficits shown by KO-LPA1 mice.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Acknowledgements: Red de Trastornos Adictivos, RTA, (RD12/0028/0013/) RETICS, ISCIII, y Consejería Innovación, Ciencia y Empresa, Junta de Andalucía (Proyecto de Excelencia CVI-6656)

    Nuclear translocation of glutaminase GLS2 in human cancer cells associates with proliferation arrest and differentiation

    Get PDF
    Glutaminase (GA) catalyzes the first step in mitochondrial glutaminolysis playing a key role in cancer metabolic reprogramming. Humans express two types of GA isoforms: GLS and GLS2. GLS isozymes have been consistently related to cell proliferation, but the role of GLS2 in cancer remains poorly understood. GLS2 is repressed in many tumor cells and a better understanding of its function in tumorigenesis may further the development of new therapeutic approaches. We analyzed GLS2 expression in HCC, GBM and neuroblastoma cells, as well as in monkey COS-7 cells. We studied GLS2 expression after induction of differentiation with phorbol ester (PMA) and transduction with the full-length cDNA of GLS2. In parallel, we investigated cell cycle progression and levels of p53, p21 and c-Myc proteins. Using the baculovirus system, human GLS2 protein was overexpressed, purified and analyzed for posttranslational modifications employing a proteomics LC-MS/MS platform. We have demonstrated a dual targeting of GLS2 in human cancer cells. Immunocytochemistry and subcellular fractionation gave consistent results demonstrating nuclear and mitochondrial locations, with the latter being predominant. Nuclear targeting was confirmed in cancer cells overexpressing c-Myc- and GFP-tagged GLS2 proteins. We assessed the subnuclear location finding a widespread distribution of GLS2 in the nucleoplasm without clear overlapping with specific nuclear substructures. GLS2 expression and nuclear accrual notably increased by treatment of SH-SY5Y cells with PMA and it correlated with cell cycle arrest at G2/M, upregulation of tumor suppressor p53 and p21 protein. A similar response was obtained by overexpression of GLS2 in T98G glioma cells, including downregulation of oncogene c-Myc. Furthermore, human GLS2 was identified as being hypusinated by MS analysis, a posttranslational modification which may be relevant for its nuclear targeting and/or function. Our studies provide evidence for a tumor suppressor role of GLS2 in certain types of cancer. The data imply that GLS2 can be regarded as a highly mobile and multilocalizing protein translocated to both mitochondria and nuclei. Upregulation of GLS2 in cancer cells induced an antiproliferative response with cell cycle arrest at the G2/M phase

    Analysis of Tumor Metabolism Reveals Mitochondrial Glucose Oxidation in Genetically Diverse Human Glioblastomas in the Mouse Brain In Vivo

    Get PDF
    SummaryDysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo

    Large Genomic Imbalances in Brugada Syndrome

    Get PDF
    Purpose Brugada syndrome (BrS) is a form of cardiac arrhythmia which may lead to sudden cardiac death. The recommended genetic testing (direct sequencing of SCN5A) uncovers disease-causing SNVs and/or indels in ~20% of cases. Limited information exists about the frequency of copy number variants (CNVs) in SCN5A in BrS patients, and the role of CNVs in BrS-minor genes is a completely unexplored field. Methods 220 BrS patients with negative genetic results were studied to detect CNVs in SCN5A. 63 cases were also screened for CNVs in BrS-minor genes. Studies were performed by Multiplex ligation-dependent probe amplification or Next-Generation Sequencing (NGS). Results The detection rate for CNVs in SCN5A was 0.45% (1/220). The detected imbalance consisted of a duplication from exon 15 to exon 28, and could potentially explain the BrS phenotype. No CNVs were found in BrS-minor genes. Conclusion CNVs in current BrS-related genes are uncommon among BrS patients. However, as these rearrangements may underlie a portion of cases and they undergo unnoticed by traditional sequencing, an appealing alternative to conventional studies in these patients could be targeted NGS, including in a single experiment the study of SNVs, indels and CNVs in all the known BrS-related genes

    Mammalian Glutaminase Gls2 Gene Encodes Two Functional Alternative Transcripts by a Surrogate Promoter Usage Mechanism

    Get PDF
    Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene.We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA) and long (GAB) transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS) and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed.This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and LGA transcripts was species- and tissue-specific providing evidence of a differential regulation of GLS2 transcripts in mammals

    Vitamin C Enhances Vitamin E Status and Reduces Oxidative Stress Indicators in Sea Bass Larvae Fed High DHA Microdiets

    Get PDF
    Docosahexaenoic acid (DHA) is an essential fatty acid necessary for many biochemical, cellular and physiological functions in fish. However, high dietary levels of DHA increase free radical injury in sea bass (Dicentrarchus labrax) larvae muscle, even when vitamin E (α-tocopherol, α-TOH) is increased. Therefore, the inclusion of other nutrients with complementary antioxidant functions, such as vitamin C (ascorbic acid, vitC), could further contribute to prevent these lesions. The objective of the present study was to determine the effect of vitC inclusion (3,600 mg/kg) in high DHA (5 % DW) and α-TOH (3,000 mg/kg) microdiets (diets 5/3,000 and 5/3,000 + vitC) in comparison to a control diet (1 % DHA DW and 1,500 mg/kg of α-TOH; diet 1/1,500) on sea bass larvae growth, survival, whole body biochemical composition and thiobarbituric acid reactive substances (TBARS) content, muscle morphology, skeletal deformities and antioxidant enzymes, insulin-like growth factors (IGFs) and myosin expression (MyHC). Larvae fed diet 1/1,500 showed the best performance in terms of total length, incidence of muscular lesions and ossification degree. IGFs gene expression was elevated in 5/3,000 diet larvae, suggesting an increased muscle mitogenesis that was confirmed by the increase in the mRNA copies of MyHC. vitC effectively controlled oxidative damages in muscle, increased α-TOH larval contents and reduced TBARS content and the occurrence of skull deformities. The results of the present study showed the antioxidant synergism between vitamins E and C when high contents of DHA are included in sea bass larvae diets

    Los últimos boteros de la Ría de Bilbao: entre el Puente de Rontegi y el Puente Colgante

    Get PDF
    Este trabajo pretende conocer el modo de vida y la visión que los actuales y últimos boteros de la Ría de Bilbao tienen de su trabajo. Para ello se elaboró un cuestionario para conocer varios aspectos de su actividad, de las embarcaciones que utilizan así como de otros aspectos vinculados a esta actividad centenaria.Lan honen bitartez, Bilboko itsasadarreko egungo eta azken ontzizainen bizimodua ezagutu nahi da, eta haiek beren lanaz duten ikuspegia. Horretarako, galdera sorta bat eratu zen, haien jarduera, haien ontziak eta mende askotako jarduera horri dagozkion beste alderdi bat zuk ezagutzeko.Ce travail essaie de connaître le mode de vie et la vision que les actuels et derniers "boteros" (patrons de canot) de la Ría de Bilbao ont de leur travail. Pour cela on a confectionné un questionnaire pour connaître les différents aspects de leur activité, les embarcations qu'ils utilisent ainsi que d'autres aspect s liés à cette activité centenaire.This research aims to know the way of live and the point of view of the current and last ferrymen on the Estuary of Bilbao. To achieve this, several questions were asked to know the task regarding their centenarian work, their vessels and other issues

    Tumor Metabolome: Therapeutic Opportunities Targeting Cancer Metabolic Reprogramming

    No full text
    This work was financially supported by Ministerio de Ciencia y Tecnología of Spain, RTI2018-096866-B-I00 (to J.M. and J.M.M.).Ye
    corecore