47 research outputs found

    A Distributed Control Strategy for Islanded Single-Phase Microgrids with Hybrid Energy Storage Systems Based on Power Line Signaling

    Get PDF
    Energy management control is essential to microgrids (MGs), especially to single-phase ones. To handle the variety of distributed generators (DGs) that can be found in a MG, e.g., renewable energy sources (RESs) and energy storage systems (ESSs), a coordinated power regulation is required. The latter are generally battery-based systems whose lifetime is directly related to charge/discharge processes, whereas the most common RESs in a MG are photovoltaic (PV) units. Hybrid energy storage systems (HESS) extend batteries life expectancy, thanks to the effect of supercapacitors, but they also require more complex control strategies. Conventional droop methodologies are usually applied to provide autonomous and coordinated power control. This paper proposes a method for coordination of a single-phase MG composed by a number of sources (HESS, RES, etc.) using power line signaling (PLS). In this distributed control strategy, a signal whose frequency is higher than the grid is broadcasted to communicate with all DGs when the state of charge (SoC) of the batteries reaches a maximum value. This technique prevents batteries from overcharging and maximizes the power contribution of the RESs to the MG. Moreover, different commands apart from the SoC can be broadcasted, just by changing to other frequency bands. The HESS master unit operates as a grid-forming unit, whereas RESs act as grid followers. Supercapacitors in the HESS compensate for energy peaks, while batteries respond smoothly to changes in the load, also expanding its lifetime due to less aggressive power references. In this paper, a control structure that allows the implementation of this strategy in single-phase MGs is presented, with the analysis of the optimal range of PLS frequencies and the required self-adaptive proportional-resonant controllers

    Naltrexone Reverses Ethanol-Induced Rat Hippocampal and Serum Oxidative Damage

    Get PDF
    Naltrexone, an antagonist of �-opioid receptors, is clinically used as adjuvant therapy of alcohol dishabituation. The aim of the present work was to test the effect of 1 mg/kg body weight of naltrexone to revert oxidative stress-related biochemical alterations, in the hippocampus and serum of chronic alcoholic adult rats. Malondialdehyde concentration was increased and glutathione peroxidase activity was decreased in hippocampus and serum of alcohol-treated rats. Naltrexone treatment restored these alterations. The in vitro antioxidant ability of Ntx could not justify these effects considering the doses used. Thus this apparent protective effect of Ntx can only be attributed to its pharmacological effects, as herein discussed.Ministerio de Educacion y Ciencia SAF2010-21317 Universidad Catolica de Valencia "San Vicente Martir" 2012-029-001 Plan Nacional sobre Drogas 2010/059 AI/ICB-Santander 07/1

    Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.Work was financed by the Spanish Ministry of Economy and Competitivity (BFU2011-26608 to FdlC, FIS-PI09/01273 and AGL2013-47852-R to JB and FIS-PI12-01581 and CB06/02/0053 to TMC), by the European Seventh Framework Program (612146/FP7-ICT-2013-10 to FdlC and 282004/FP7-HEALTH-2011-2.3.1-2 to FdlC and TMC); by Red Española de Investigación en Patología­ Infecciosa (REIPI RD06/0008/1018-1016) to JB, by Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia and European Regional Development Fund, ERDF (CN2012/303 and EM2014/001) to JB and by the regional government of Madrid (PROMPT-S2010/BMD2414) to TMC. We are also grateful to the Spanish Network for the Study of Plasmids and Extrachromosomal Elements (REDEEX) for funding cooperation among Spanish microbiologists working on the biology of MGEs (Spanish Ministry of Science and Innovation BFU2011-14145-E).Peer Reviewe

    Differential hippocampal response to chronic alcohol consumption of young adult and mature adult rats

    Get PDF
    AIMS Early ethanol consumption could be a risk factor for young brain integrity and its maturation, and also for the development of addictive behaviors in adulthood. Neuronal nitric oxide synthase (nNOS) expressing neurons are specifically located in the subgranular layer (SGL) of dentate gyrus and may be relevant for hippocampal neurogenesis. The focus of this work is aimed to determine local changes in the nNOS-like immunoreactive (nNOS-LIR) cell populations of the SGL after chronic ethanol exposure in young adult and mature adult rats. METHODS We used the nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase (NADPH-d) reaction as a qualitative marker of nNOS enzyme activity. We also analyzed the nNOS-LIR cell density by the nNOS immunocytochemistry in order to compare these two methods of labeling. Dorsal striatum (CPu) was also analyzed in order to compare two neural areas with high nNOS-LIR cell density. RESULTS The young adult group showed less hippocampal NADPH-d(+) cell density than the mature adult group. Interestingly, the NADPH-d(+) cell density was increased in the SGL of the young adult ethanol-treated group, whereas it decreased in the mature adult ethanol-treated group, when compared with their respective controls. No change was observed in any of the groups for the hippocampal nNOS-LIR cell density and no differences could be established in CPu for nNOS-LIR and NADPH-d(+) cell densities in any of the groups studied. CONCLUSION The NADPH-d expression is affected by chronic ethanol exposure in opposite ways between both age groups studied. Further studies are needed to evaluate the relative importance of these findings, especially when considering human subject

    Role of hippocampal NF-κB and GluN2B in the memory acquisition impairment of experiences gathered prior to cocaine administration in rats

    Get PDF
    Cocaine can induce severe neurobehavioral changes, among others, the ones involved in learning and memory processes. It is known that during drug consumption, cocaine-associated memory and learning processes take place. However, much less is known about the effects of this drug upon the mechanisms involved in forgetting.The present report focuses on the mechanisms by which cocaine affects memory consolidation of experiences acquired prior to drug administration. We also study the involvement of hippocampus in these processes, with special interest on the role of Nuclear factor kappa B (NF-κB), N-methyl-D-aspartate glutamate receptor 2B (GluN2B), and their relationship with other proteins, such as cyclic AMP response element binding protein (CREB). For this purpose, we developed a rat experimental model of chronic cocaine administration in which spatial memory and the expression or activity of several proteins in the hippocampus were assessed after 36 days of drug administration. We report an impairment in memory acquisition of experiences gathered prior to cocaine administration, associated to an increase in GluN2B expression in the hippocampus. We also demonstrate a decrease in NF-κB activity, as well as in the expression of the active form of CREB, confirming the role of these transcription factors in the cocaine-induced memory impairment

    Ethanol-Induced Oxidative Stress Modifies Inflammation and Angiogenesis Biomarkers in Retinal Pigment Epithelial Cells (ARPE-19): Role of CYP2E1 and its Inhibition by Antioxidants

    Get PDF
    The retinal pigment epithelium (RPE) plays a key role in retinal health, being essential for the protection against reactive oxygen species (ROS). Nevertheless, excessive oxidative stress can induce RPE dysfunction, promoting visual loss. Our aim is to clarify the possible implication of CYP2E1 in ethanol (EtOH)-induced oxidative stress in RPE alterations. Despite the increase in the levels of ROS, measured by fluorescence probes, the RPE cells exposed to the lowest EtOH concentrations were able to maintain cell survival, measured by the Cell Proliferation Kit II (XTT). However, EtOH-induced oxidative stress modified inflammation and angiogenesis biomarkers, analyzed by proteome array, ELISA, qPCR and Western blot. The highest EtOH concentration used stimulated a large increase in ROS levels, upregulating the cytochrome P450-2E1 (CYP2E1) and promoting cell death. The use of antioxidants such as N-acetylcysteine (NAC) and diallyl sulfide (DAS), which is also a CYP2E1 inhibitor, reverted cell death and oxidative stress, modulating also the upstream angiogenesis and inflammation regulators. Because oxidative stress plays a central role in most frequent ocular diseases, the results herein support the proposal that CYP2E1 upregulation could aggravate retinal degeneration, especially in those patients with high baseline oxidative stress levels due to their ocular pathology and should be considered as a risk factor.LVG was recipient of a pre-doctoral fellowship (EDUCV-PRE-2015-006). Financial support by grant #94/2016 from the PROMETEO program from the Generalitat Valenciana, Valencia, Spain, to FJR

    Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    Get PDF
    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction

    Role of retinal pigment epithelium-derived exosomes and autophagy in new blood vessel formation

    Get PDF
    Autophagy and exosome secretion play important roles in a variety of physiological and disease states, including the development of age‐related macular degeneration. Previous studies have demonstrated that these cellular mechanisms share common pathways of activation. Low oxidative damage in ARPE‐19 cells, alters both autophagy and exosome biogenesis. Moreover, oxidative stress modifies the protein and genetic cargo of exosomes, possibly affecting the fate of surrounding cells. In order to understand the connection between these two mechanisms and their impact on angiogenesis, stressed ARPE‐19 cells were treated with a siRNA‐targeting Atg7, a key protein for the formation of autophagosomes. Subsequently, we observed the formation of multivesicular bodies and the release of exosomes. Released exosomes contained VEGFR2 as part of their cargo. This receptor for VEGF—which is critical for the development of new blood vessels—was higher in exosome populations released from stressed ARPE‐19. While stressed exosomes enhanced tube formation, exosomes became ineffective after silencing VEGFR2 in ARPE‐19 cells and were, consequently, unable to influence angiogenesis. Moreover, vessel sprouting in the presence of stressed exosomes seems to follow a VEGF‐independent pathway. We propose that abnormal vessel growth correlates with VEGFR2‐expressing exosomes release from stressed ARPE‐19 cells, and is directly linked to autophagy
    corecore