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Abstract: The retinal pigment epithelium (RPE) plays a key role in retinal health, being essential
for the protection against reactive oxygen species (ROS). Nevertheless, excessive oxidative stress
can induce RPE dysfunction, promoting visual loss. Our aim is to clarify the possible implication
of CYP2E1 in ethanol (EtOH)-induced oxidative stress in RPE alterations. Despite the increase in
the levels of ROS, measured by fluorescence probes, the RPE cells exposed to the lowest EtOH
concentrations were able to maintain cell survival, measured by the Cell Proliferation Kit II (XTT).
However, EtOH-induced oxidative stress modified inflammation and angiogenesis biomarkers,
analyzed by proteome array, ELISA, qPCR and Western blot. The highest EtOH concentration used
stimulated a large increase in ROS levels, upregulating the cytochrome P450-2E1 (CYP2E1) and
promoting cell death. The use of antioxidants such as N-acetylcysteine (NAC) and diallyl sulfide
(DAS), which is also a CYP2E1 inhibitor, reverted cell death and oxidative stress, modulating also the
upstream angiogenesis and inflammation regulators. Because oxidative stress plays a central role
in most frequent ocular diseases, the results herein support the proposal that CYP2E1 upregulation
could aggravate retinal degeneration, especially in those patients with high baseline oxidative stress
levels due to their ocular pathology and should be considered as a risk factor.

Keywords: retinal pigment epithelium; homeostasis; oxidative stress; degeneration; CYP2E1

1. Introduction

The retinal pigment epithelium (RPE) is essential for retinal health [1–9]. In addition to being
directly involved in the vision process, RPE is the main component of the outer blood-retinal barrier
and it is implicated in retinal homeostasis [4]. As a barrier, RPE restricts the access of cells and
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molecules from blood to neural retina and allows the exchange of nutrients and waste substances [3,4].
Another important RPE function is the release of some neurotrophic and growth factors which are part
of the RPE-secretome [5] and are essential to maintaining retinal and choriocapillar function [1,3,5].

Age-related macular degeneration (AMD) is one of the major causes of blindness worldwide
without cure [10]. AMD affects around 8% of the population and the prevalence of this disease is
increasing as longevity does [11]. AMD is a complex and multifactorial disease where ageing plays a
critical role [12]. Besides age and genetic predisposition, which have clearly been identified as risk
factors, the environment and nutrition have also been described as modifiable risk factors to avoid RPE
and photoreceptor cells death at eye macula [11,12]. Another significant player in AMD is the RPE,
which loses its functions, promoting retinal neurodegeneration [13,14]. Choroidal angiogenesis and
inflammation are the main activated pathways in AMD [15]. These processes have been related with
RPE dysfunction [16–20] by promoting the disturbance of RPE-released growth factors such as vascular
endothelium growth factor (VEGF), pigment epithelium-derived factor (PEDF) and inflammatory
molecules such as interleukin (IL)-6, IL-8 [16], IL-1α and IL-1β [18] or matrix metalloproteinases (MMPs)
such as MMP-1, MMP-2 and MMP-3 [20]. All this, together with the increase in oxidative stress by the
accumulation of superoxide anions and other reactive oxygen species (ROS), finally causes RPE cell
death. Furthermore, interaction between photoreceptors and RPE cells is critical for maintaining visual
function, and its alteration can lead to compromised vision. Our group has already demonstrated that
antioxidants can delay photoreceptor degeneration in a mouse model of retinitis pigmentosa [21–23],
and this protective effect certainly requires the integrity of RPE [24,25].

Oxidative stress is a common factor in all retinal diseases [10,26] which contributes to inflammation
and angiogenesis development in retinal neurodegenerative diseases [27–29]. In addition, there is a
cross talk between these processes [28,30,31]. Common players such as the stress-activated protein
kinases (SAPK)/Jun amino-terminal kinases (JNK), the nuclear factor kappa-B (NFkB) and protein kinase
B (AKT) act as signaling factors contributing to the senescence and ageing diseases development [32].
Although RPE is able to counteract ROS by different mechanisms [33–39], exposure to chronic and
large amounts of them promote an imbalance between its generation and elimination. Several authors
have previously shown that alcohol intake increases ROS production by microsomal cytochrome
P450-2E1 (CYP2E1) [40–45]. They demonstrated that CYP2E1-dependent ROS production can induce
apoptosis and inflammation in alcohol-induced liver injury (40) and alcoholic hepatic steatosis [41,42].
Additionally, the upregulation of CYP2E1 has been related to the induction of angiogenesis in different
types of cancer [43–45]. Even though it has been demonstrated that alcohol consumption contributes
to neurological disease development and could be considered as a risk factor in AMD, the implication
and activity of CYP2E1 in these neurodegenerative diseases is poorly understood [46].

Previous studies from our group reported that CYP2E1 is present in human RPE and its
overexpression and activation promote cell death [47]. Furthermore, and based on our knowledge,
few studies have been conducted in the retina and even less in the RPE. Therefore, our main goal is to
study the degeneration processes activated in RPE cells after inducing oxidative stress and CYP2E1
upregulation by ethanol (EtOH) and elucidate how antioxidants could alleviate these alterations.

2. Materials and Methods

2.1. Cell Culture and Treatments

Human RPE cell line ARPE-19 cells were cultured according to supplier’s protocol (American
Type Culture Collection [ATCC]; Manassas, VA, USA) and were used from passages 11 to 13.
Cells were cultured in DMEM/F12 (Thermo Fisher, Waltham, MA, USA), supplemented with 5 mM
2-[4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid (HEPES; Thermo Fisher), 44 mM NaHCO3

(Thermo Fisher), 10% fetal bovine serum (FBS; Thermo Fisher) and 100 U/mL penicillin/streptomycin
(Thermo Fisher). Cell cultures were maintained at 37 ◦C and 5% CO2. Cells were seeded at
1 × 103 cells/cm2 density. After 2 days at 80% of confluence, cells were treated for 24 h at different EtOH



Antioxidants 2020, 9, 776 3 of 17

(Biosolve, Valkenswaard, The Netherlands) concentrations considering our previous results [47,48].
For CYP2E1 inhibition, diallyl sulfide (DAS; Santa Cruz Biotechnology, Dallas, TX, USA), a known
CYP2E1 inhibitor, was added to the medium in a final concentration of 20 mM in 0.1% of dimethyl
sulfoxide (DMSO) to the culture media without FBS. As an antioxidant, cells were treated with
N-acetylcysteine (NAC; Sigma Aldrich, St. Louis, MO, USA) in a final concentration of 4 µM. DAS and
NAC were added to the cell culture medium at the same time as EtOH and treatments were carried out
for 24 h. Previously, for both drugs, a viability assay was performed to select the final concentration
used (data not shown).

2.2. Determination of ROS Levels

ROS levels were measured by two different fluorescent probes. We used 2-7-
dichlorodihydrofluorescein diacetate (DCFDA; Santa Cruz Biotechnology) for total intracellular
ROS. This molecule can be oxidized by ROS producing intracellular dichlorofluorescein (DCF), which
is a fluorescent compound. Dihydroethidium, a superoxide anion indicator (DHE; Thermo Scientific,
Waltham, MA, USA) exhibits blue fluorescence; however, once this probe is oxidized to ethidium,
it intercalates within DNA, staining the cell nucleus with a bright fluorescent red. Cells were seeded in
a 96 multiwell plate as mentioned before. After 24 h of EtOH, DAS and NAC treatment, cells were
incubated with 15 µm of DCFDA and 5 µm of DHE according to supplier’s protocol, during 30 min at
37 ◦C, thereafter; levels of fluorescence were measured with a multiplate reader (Victor X5, Perkin Elmer,
Turku, Finland). The experiments were repeated in three different days (three independent experiments,
N = 3) for DHE incubation and four times (N = 4) for DCFDA to ensure the consistency of the results.
The results were expressed as percentage relative to the control group.

2.3. Cell Viability

The cell proliferation kit II (Roche, Basel, Switzerland) based on the cleavage of the yellow
tetra-zolium salt sodium 3′-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro) benzene
sulfonic acid hydrate (XTT), to form an orange formazan dye, was used to determine cell viability as
mitochondrial activity. Cells were seeded in a 96-well plate and treated as mentioned before in 2.1 cell
culture and treatments section. According to supplier’s protocol, XTT solution was added to each well
and incubated for 6 h at 37 ◦C in 5% CO2. Then, absorbance was read at 550 nm by microplate reader
(Victor X5; Perkin Elmer). The experiments were repeated in three different days (three independent
experiments, N = 3) to ensure the consistency of the results. The results were expressed as percentage
relative to the control group.

2.4. Proteome Profiling

The human angiogenesis proteome profile array (R&D Systems, Minneapolis, MN, USA)
provides a rapid, sensitive tool to simultaneously detect the relative levels of angiogenesis- and
inflammation-related proteins in a single sample. For protein isolation, EtOH-treated ARPE-19 cells
were rinsed in phosphate-buffered saline (PBS) and lysed in RIPA lysis buffer (Thermo Fisher Scientific)
supplemented with a protease/phosphatase inhibitor cocktail (Sigma-Aldrich). Subsequently, the
samples were sonicated 3 cycles of 3 pulses (waiting 10 s between pulses) at 20% of amplitude,
(Branson Digital Sonifier) and centrifugated at 100,000× g at 4 ◦C for 20 min. The amount of protein in
supernatants was quantified by BCA Protein Assay (Thermo Fisher Scientific) using bovine serum
albumin as standard. ARPE-19 cells were exposed to different EtOH concentrations in triplicate.
Cells from the same experimental condition were pooled before protein extraction. After that, a total of
200µg of proteins from each pool of samples was incubated in the immunoblotted membranes overnight
at 4 ◦C, according to the manufacturer’s manual. The day after, each membrane was incubated for
30 min at room temperature with streptavidin-HRP secondary antibody. The chemiluminescence signal
was detected by CCD camera (ImageQuant LAS 4000 Mini, GE, Chicago, IL, USA). Signal intensity
was quantified by densitometry using the ImageQuant TL (GE) software and was determined by
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the average signal of the pair of duplicate spots representing each protein. The row data of the
quantification are available in the Supplementary Material (Table S1).

2.5. Matrix Metalloproteinases ELISA

The quantitative determination of matrix metalloproteinases (MMP-1, MMP-2, MMP-3, MMP-7,
MMP-8, MMP-9 and MMP-13) was carried out by an ELISA kit, Mosaic ™ ELISA Human MMP
Panel (R&D Systems) according to the manufacturer’s protocol. First, using the same procedure
described before for proteome profiling, proteins were isolated. Then, a total of 100 µL of each protein
sample was deposited in the ELISA plate well containing fixed specific capture antibodies for each
MMP. Chemiluminescent signal was detected by CCD camera (ImageQuant LAS 4000 Mini, GE).
Signal intensity was quantified by densitometry using the ImageQuant TL (GE) software. MMPs’
concentration values were calculated using each standard curve and were normalized considering
the protein concentration of each sample. The experiments were repeated on three different days
(three independent experiments, N = 3). The results were expressed as percentage relative to the
control group.

2.6. Western Blotting

After EtOH treatment, cells were scraped and lysed with RIPA buffer as previously described
in 2.4. Proteome profiling section. Thereafter, protein quantification was carried out by BCA
Protein Assay (Thermo Fisher Scientific) using bovine serum albumin as standard. Equal amounts of
protein from each sample (35 µg) were denatured in Laemmli sample buffer (4% SDS (w/v), 10% (v/v)
beta-mercaeptoethanol, 20% (v/v) glycerol, 0.004% (w/v) bromophenol blue and 125 mM Tris-HCl, pH
6.8) and heated to 95 ◦C for 10 min. Then, electrophoresis was carried out by SDS-PAGE on 4–12%
(v/v) acrylamide gels and electroblotted onto polyvinylidene difluoride membranes (PVDF; Millipore,
Temecula, CA, USA). Membranes were incubated overnight at 4 ◦C with rabbit anti-vascular endothelial
growth factor receptors 1 and 2 (VEGFR-1 and VEGFR-2) antibodies (1:250; Abcam, Cambridge, MA,
USA), rabbit anti-P65-NFkB antibody (1:500; Santa Cruz Biotechnology), rabbit anti-CYP2E1 antibody
(1:250; Abcam), rabbit anti-SAPK/JNK antibody (1:250; Cell Signaling Technology, Danvers, MA,
USA), rabbit anti-AKT antibody (1:500; Cell Signaling Technology), rabbit anti- phospho (Ser473)-AKT
antibody (1:250; Cell Signaling Technology) and mouse anti-β-actin antibody (1:500; Santa Cruz
Biotechnology) diluted in 3% (w/v) bovine serum albumin in Tris-buffered saline with 0.1% Tween-20
(TBS/T) at pH 7.6. Finally, membranes were incubated for 2 h at room temperature with anti-rabbit
or anti- mouse IgG-HRP (1:10,000; Santa Cruz Biotechnology) diluted in TBS/T after three 10-min
washes with TBS/T. Bands were visualized with enhanced chemiluminescence (ECL; Pierce, Thermo
Fisher Scientific) and detected with Image Quant LAS-4000 mini (GE). Protein levels were quantified
by densitometry using ImageJ software (National Institutes of Health [NIH], Bethesda, MD, USA).
The results were normalized by β-actin values as a housekeeping protein. The experiments were
repeated in three different days (three independent experiments, N = 3) to ensure the consistency of
the results. The results were expressed as percentage relative to the control group.

2.7. Quantitative Real Time PCR (RT-qPCR)

Total RNA was extracted from ARPE cells after treatments by RNeasy Plus Micro/Mini Kits
(Qiagen, Hilden, Germany) and Nanodrop (Thermo Fisher Scientific) was used to evaluate the total
RNA concentration and its quality (260/280 absorbance ratio). For each reaction, 100 ng RNA was
reverse-transcribed into cDNA by reverse transcription-polymerase chain reactions (RT-PCR) using
SuperScript III First-Strand Synthesis System (Life Technologies, Thermo Fisher Scientific) in a thermal
cycler PeqSTAR 96 Universal Gradient (PeqLAb, VWR International, Amadora, Portugal) under the
following reaction conditions: 65 ◦C for 5 minutes (min), room temperature for 2 min, 42 ◦C for
60 min, and 70 ◦C for 10 min. The mRNA expression analysis was performed using 1 µL of the cDNA
synthesis reaction of each sample subjected to real-time quantitative PCR (qPCR). The reactions were
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performed with Sybr Green Supermix (Applied Biosystems, Carlsbad, CA, USA) in a LightCycler 480
II System (Roche) under the following reaction conditions: 95 ◦C for 5 min, followed by 40 cycles of
95 ◦C for 10 s (second), 60 ◦C for 20 s and 72 ◦C for 30 s. Samples were run in triplicate to calculate
VEGF (F: 5′-AGGAGGAGGGCAGAATCATCA-3′; R: 5′-CTCGATTGGATGGCAGTAGCT-3′) and
pigment epithelium derived factor (PEDF) (F: 5′-AACCTTACAGGGGCAGCCTT-3′; R: 5′-TGAGG
GACACAGACACAGGG-3′) mRNA expression. The primer concentration used was 10 µM and
normalization was done using the endogenous control gene GAPDH (F: 5′ TGAAGGTCGGAGTCA
ACGGAT-3′; R: 5′-TTCTCAGCCTTGACGGTGCCA-3′) to standardize the results. X-fold change in
mRNA levels was determined by applying the 2−∆∆CT method. The experiments were repeated in
three different days (three independent experiments, N = 3). The results were expressed as percentage
relative to the control group.

2.8. Statistical Analysis

Statistical analyses were performed by using Prism 5.04 software (GraphPad, San Diego, CA,
USA). The analysis of variance was carried out by one-way ANOVA and multiple comparisons using
the post hoc Tukey test. Data are reported as the mean ± standard error of the mean. Statistically
significant differences were set at p < 0.05.

3. Results

3.1. EtOH Induces ROS Accumulation in RPE Cells Promoting Death

Previously published works from our group showed that RPE cells are very resistant to
EtOH-induced cytotoxicity and more than 600 mM of EtOH is necessary to induce cell death by
apoptosis. For this reason, and considering our preliminary data, our first objective was to measure
EtOH-induced ROS accumulation in ARPE-19 cells. Two fluorescence probes were used to determine
EtOH-induced ROS in human RPE cells. The DHE probe was selected to measure superoxide anions
and DCFDA to detect total of intracellular ROS. ARPE-19 cells were treated for 24 h with increasing
concentrations of EtOH (200, 400, 600, 800 and 1200 mM of EtOH) and the results obtained were
compared with those from non-treated cells (control group). As Figure 1 shows, the total number of
intracellular ROS (Figure 1A) was significantly increased in all treated groups compared to non-treated
cells in a concentration-dependent manner. The increase in superoxide anions (Figure 1B) was
statistically significant from 400 mM EtOH. These results were accompanied by a positive correlation
(R2 = 0.887) between intracellular ROS accumulation and the increase in cell death, measured by cell
proliferation kit II (XTT) (Figure 1C).
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Figure 1. Intracellular reactive oxygen species (ROS) accumulation and cell death in ARPE-19 after
ethanol (EtOH) exposure. (A) After 24 h of EtOH treatment with increasing concentrations, total
intracellular ROS were measured by 2-7-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence
probe and (B) superoxide anions by DHE fluorescence probe. (C) Lineal correlation between total
intracellular ROS and cell death measured by XTT. Values are expressed as mean ± SEM (N = 3–4).
Statistically significant differences were set at * p < 0.05 vs. control (CTL) group.

3.2. Ethanol Altered the Inflammation and Angiogenesis-Related Proteome Profile in Human RPE Cells

Knowing the important role of superoxide anions and ROS accumulation in oxidative stress
generation, RPE cells proteome profile changes were measured starting with initial EtOH concentration
in which ROS were enhanced (200 mM) until the concentration of EtOH in which cell death starts (600
mM). The use of the Proteome Profiler Human Angiogenesis Array Kit allows us to measure a wide
range of molecules and growth factors released by RPE cells as a part of RPE-secretome. As Figure 2A
shows, a total of 55 proteins were identified in ARPE-19 cells after EtOH treatment. In Table S1,
all the raw data obtained are shown. In Figure 2B, the most relevant neurotrophic, angiogenic and
inflammation factors that experienced bigger changes due to EtOH treatment are represented. Some of
these factors were upregulated after EtOH exposure such as glial cell line-derived neurotrophic
factor (GDNF), pro-angiogenic factors VEGF-C and granulocyte macrophage colony-stimulating
factor (GM-CSF) and MMP-8 as inflammation-related factors. Nevertheless, other pro-angiogenic
factors such as VEGF-A or endostatin were downregulated. This proteome analysis also showed
that there is a biphasic response in some released factors. Note that PEDF, an anti-angiogenic factor,
experienced an increase at 200 mM EtOH followed by a drop in its protein levels. Among others,
the inflammation-related factors IL-8, MMP-9 and metalloproteinase inhibitor-4 (TIMP-4) showed
similar behavior.
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Figure 2. Proteome profile in ARPE-19 cells after EtOH exposure. (A) Workflow of the semi-quantitative
proteomic analysis by antibody array system after 24 h of 200, 400 and 600 mM EtOH treatment in
ARPE-19 cell. (B) Main neurotrophic, angiogenic and inflammation factors that experienced major
changes. Values are expressed as the mean of pixel density signal of the pair of duplicate spots
representing each protein.

3.3. Ethanol Modified Matrix Metalloproteinases Levels in Human RPE Cells

To validate the proteome array and because MMPs have been considered an important angiogenesis
and inflammation biomarkers in AMD pathogenesis, MMPs were quantified by ELISA after EtOH
exposure. The results in Figure 3 show a graphical representation where MMPs are grouped according
to their cellular function. According to ELISA results, EtOH promoted a significant change on MMPs
protein levels in RPE cells. While some MMPs were significantly upregulated in all EtOH concentration
used, others only experienced this alteration at the highest concentrations used. Interestingly,
stromelysin MMP-3 was enhanced (Figure 3A) in all EtOH concentrations used showing upregulation
in a concentration-dependent manner. Among collagenases (Figure 3B), MMP-8 showed a marked
increase at 400 mM EtOH which reaches around 200% at 600 mM EtOH compared with control group.
On the other hand, the MMP-1 differences were only observed at 400 mM EtOH compared with the
control group. No significant differences were observed in MMP-13 protein levels. The gelatinases
family experienced an increment at 400 mM EtOH compared to non-treated group (Figure 3C), these
differences being greater in MMP-2. Interestingly, both MMP-2 and MMP-9 were decreased at 600 mM
EtOH, returning their protein values to the lowest EtOH concentration used. Finally, there were not
significant differences in the matrilysin MMP-7 (Figure 3D).
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Figure 3. Metalloproteinase (MMP) protein levels in ARPE-19 cells under EtOH treatment. The levels
of MMPs were measured with ELISA. The relative MMPs protein levels after EtOH treatment were
represented by their functional classification: (A) stromelysin, (B) collagenases, (C) gelatinases and
(D) matrilysin. Values are expressed as mean ± SEM (N = 3). Statistically significant differences were
set at * p < 0.05 vs. CTL group.

3.4. Ethanol Modified the Upstream and Downstream Angiogenesis Regulators in RPE Cells

In order to confirm the effect of EtOH in the release of the main angiogenesis factors by RPE and
validate the proteome array, the expression and translation of upstream angiogenesis regulators were
quantified (Figure 4). VEGF and PEDF mRNA expression were studied by qPCR in ARPE-19 cells after
EtOH treatment at different concentrations.

The lowest EtOH concentration used, 200 mM EtOH, was enough to overexpress VEGF and
PEDF. The VEGF mRNA reached twice the level at 200 mM EtOH compared with the control group
(Figure 4A). Similarly, PEDF mRNA was overexpressed by around 150% at 200 mM EtOH (Figure 4B).
However, the increment of EtOH concentrations resulted in a decrease in VEGF and PEDF expression,
being statistically significant in the case of PEDF. These results are in line with those obtained in the
proteome profile array and correlate with MMP protein levels, which also experienced a biphasic
response depending on EtOH concentration used. To clarify if EtOH also modified the upstream and
downstream angiogenesis regulators in human RPE cells, protein levels of the VEGF transcription
factor NFkB-p65 and the VEGF receptors (VEGFR-1 and VEGFR-2) were measured by Western
blot, (Figure 4C). Similarly to what happened with VEGF, while treatment with 400 mM EtOH
significantly increased NFkB-p65 protein levels, 600 mM EtOH had the opposite effect, even falling
below baseline levels, (Figure 4C,D). On the other hand, there is a significant decrease in an EtOH
concentration-dependent manner of VEGFR-1 (Figure 4C,E). The VEGFR-2 protein expression was
increased at 200 mM EtOH followed by a significant reduction at 400 and 600 mM EtOH (Figure 4C,F).
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Figure 4. Growth factors and angiogenesis biomarkers in ARPE-19 cells after EtOH treatment. (A) VEGF
and (B) PEDF mRNA expression quantification by qPCR. (C) Representative pictures of protein levels
quantification by western blot (WB) of (D) p65-NFкB, (E) VEGFR-1 and (F) VEGFR-2. Gene expression
was normalized by GAPDH gene expression. Protein levels were normalized by β-actin. Values are
expressed as mean ± SEM (N = 3). Statistically significant differences were set at * p < 0.05 vs.
CTL group.

3.5. CYP2E1 Upregulation Promotes Cell Death via Oxidative Stress Induction

Based on previously published results from our group, 600 mM EtOH is necessary to upregulate
CYP2E1. With the aim to elucidate the implication of CYP2E1 in EtOH-induced oxidative stress,
ARPE-19 cells were treated at the same time with 600 mM EtOH and 20 mM DAS (CYP21E1 inhibitor)
or 4 µM NAC (antioxidant molecule). As Figure 5 shows, both drugs were able to reduce CYP2E1
protein levels to control values (Figure 5A). The protective effect of CYP2E1 inhibition and ROS
blockade resulted in an increase in cell survival, reaching the values of the control group (Figure 5B).
This improvement of cell survival correlates with the significant reduction in intracellular superoxide
anions (Figure 5C) and total intracellular ROS (Figure 5D).
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Figure 5. EtOH-induced oxidative stress promotes CYP2E1 upregulation and cell death. (A) CYP2E1
protein levels in ARPE-19 after 600 mM EtOH treatment and 20 mM DAS or 4 µM NAC measured
by WB. (B) Cell viability by XTT assay. (C) Superoxide anions by DHE fluorescence and (D) Total
intracellular ROS by DCFH fluorescence. Protein levels were normalized by β-Actin. Values are
expressed as mean ± SEM (N = 3). Statistically significant differences were set at * p < 0.05.

3.6. CYP2E1 Upregulation Modulates the Upstream Angiogenesis and Inflammation Regulators in RPE Cells

Because 600 mM of EtOH upregulated CYP2E1 and resulted in the downregulation of angiogenesis
factors, we studied the possible implication of CYP2E1 in this phenomenon. Again, ARPE-19 cells
were treated simultaneously with 600 mM of EtOH and DAS to inhibit CYP2E1 or NAC to abolish
ROS production (Figure 6). As expected, CYP2E1 inhibition and oxidative stress depletion increased
protein levels of NFkB-p65. In addition, CYP2E1 inhibition with DAS induced an upregulation
of NFkB-p65, increasing its protein levels by around 70% above the control group (Figure 6A,B).
In addition, treatment with DAS promoted the increase in protein levels of the stress-activated protein
kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK) (Figure 6A,C) and the phosphorylated form OF
protein kinase (p-AKT) (Figure 6A,D) which are involved in NFkB-p65 pathway activation. However,
although treatment with NAC also increased NFkB-p65, SAPK/JNK, Pakt/AKT protein levels, it did
not have the same effect as DAS.
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(D) pAKT/AKT ratio. Protein levels were normalized by β-actin. Values are expressed as mean ± SEM
(N = 3). Statistically significant differences were set at * p < 0.05 vs.

4. Discussion

Previous studies from our group reported that EtOH induces cytotoxic response in human
RPE cells [47,48]. While low EtOH exposure induces a pro-survival pathway activation such as
autophagy [48], higher EtOH concentrations induce cell death and RPE dysfunction [47]. We also
demonstrated that higher EtOH exposure induces CYP2E1 upregulation, promoting cell death through
apoptosis activation [47]. However, the current work reveals that EtOH-induced oxidative stress can
upregulate CYP2E1 expression and activity by itself, inducing RPE cells alterations (Figure 5). The use
of NAC as an antioxidant was able to decrease CYP2E1 expression, improving cell viability in a similar
way that the CYP2E1 specific inhibitor (DAS) did. Furthermore, superoxide anions and total of ROS
generated by EtOH were reduced to baseline levels using both treatments. A plausible explanation is
that oxidative stress generated under EtOH treatment in ARPE-19 cells is related to CYP2E1 activity,
resulting in the production of large amounts of ROS [40–43,49], which were key mediators in RPE cell
death (Figure 1). In accordance with Jin et al. [49], the ROS production mediated by CYP2E1 activity
could be upregulating its own expression. This would be also supported by the fact that CYP2E1
is induced in ARPE-19 cells under different oxidative stress stimuli, such as H2O2 and high glucose
exposure [50].

Levels of angiogenesis and inflammation-related factors were modified by EtOH treatment.
While some of them were up- or down-regulated in a concentration-dependent manner, others
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experienced a bi-phasic response that could be explained considering survival and signaling pathways
activation [47,48,51–54]. Among others, MMPs were upregulated in an EtOH concentration-dependent
manner (Figures 2 and 3). The expression of MMPs, which is low in healthy RPE [55], could be
elevated during inflammatory, degenerative and angiogenic lesions [56]. The increase in MMP-2
and MMP-9 under EtOH treatment reinforces the claim that both are upregulated in retina under
oxidative stress conditions [31,56]. EtOH treatment also increased MMP-1 and MMP-3; both have been
involved in extracellular matrix disruption surrounding the RPE and the Bruch’s membrane [20,31,57].
The increase in MMP-8 also corroborates the activation of the inflammation process in RPE under
EtOH exposure [58].

It has been demonstrated that RPE releases pro-angiogenic factors such as VEGF, which stimulates
the proliferation of endothelial cells and is also implicated in the development of pathophysiology
conditions in AMD [3,59]. Thus, the use of VEGF as a target of therapeutic strategies has been vastly
explored [60]. VEGF, mainly secreted into the basal side of the RPE retinal layer, is implicated in
cell survival and vascular maintenance. The increase in VEGF in ARPE-19 cells at 200 mM EtOH
(Figure 4) could be explained by its implication in cell survival pathways under oxidative stress
conditions [47,48,51]. However, the large amounts of ROS produced at 600 mM EtOH have the opposite
effect. A plausible explanation could be that greater amounts of ROS induce CYP2E1 upregulation,
enhancing oxidative stress and promoting cell death by apoptosis [47,61]. CYP2E1 upregulation could
also act by blocking the VEGF pathway not only in RPE but also in retinal vasculature [50,51], which
would result in a dysfunction of the outer blood–retinal barrier. Our present data also show an increase
in PEDF at 200 mM EtOH, followed by a significant fall in a dose-dependent manner (Figure 4). PEDF is
one of the major regulators of retinal angiogenesis [53], being able to inhibit the VEGF effect by binding
to VEGFR-2 or by promoting the proteolysis of VEGFR-2 by the activation of α-secretase [62]. Therefore,
our results could indicate that RPE cells compensate for the VEGF overexpression through the increase
in PEDF. Moreover, PEDF could be helping to counteract ROS-induced cell death, considering its
neurotropic and anti-inflammatory activity [54,63]. The fact that the induction of VEGF promotes
VEGFR-2 upregulation [51] allows us to explain our results. As it is possible to see in Figure 4, protein
levels of VEGFR-2 have the same response to EtOH exposure that VEGF had. In addition, NFkB-p65
showed a similar behavior which is in agreement with these results, considering that constitutive
VEGF secretion in the RPE/choroid is regulated by this transcription factor [17]. In addition, NFkB-p65
has been found to be upregulated under angiogenic [14] and inflammatory conditions [64].

There are many reports that suggested a possible relationship between CYP2E1 and NFkB,
but the roles played by each of them remain unclear. While some authors defend the idea that
CYP2E1 plays a fundamental role in the regulation of NFkB [41,65], others affirm that NFkB is the
main mediator in CYP2E1 expression [66]. Considering our results, the inhibition of CYP2E1 by
DAS promoted an increase in NFkB-p65 protein levels, corroborating the relationship between both
(Figure 6). Furthermore, the fact that NFkB-p65 not only was upregulated by the CYP2E1 inhibition,
but also its protein levels increased above those of the control group, potentially indicating a possible
relationship between CYP2E1 in angiogenesis and inflammation upstream regulators in human RPE
cells, in a similar way as it does in other tissues [40–46]. Anyhow, further studies are needed to
clarify this relationship in RPE. The inhibition of CYP2E1 also modified the pAKT/AKT protein profile,
which is also implicated in angiogenesis signaling mediated by VEGF/VEGFR-2 [67], although these
changes were not statistically significant. Importantly, SAPK/JNK, which was decreased after EtOH
exposure, experienced an increase after NAC and DAS treatment. This could be explained considering
results from Cao et al. [68], which attributed to JNK an antiapoptotic role. Additionally, JNK has been
suggested as a neovascularization modulator, acting as a VEGF transcription factor [69]. This would
correlate with the increased protein levels of NFkB-p65 also observed in Figure 6, which has been
demonstrated to be involved in the JNK signaling pathway [70].

Inflammation and angiogenesis are the main processes activated during retinal neurodegenerative
diseases [17], including AMD [13,30,71], one of the major causes of blindness worldwide without
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cure [10] in which RPE plays an important role. The implication of CYP2E1 in RPE dysfunction
and its role in outer blood–retinal barrier degeneration has not been previously studied. Thus, the
fact that levels of angiogenesis- and inflammation-related factors were modified after EtOH-induced
oxidative stress in RPE cells, could indicate that CYP2E1 upregulation affects RPE function. Although
CYP2E1 would play a key role in the generation of ROS and also in the alteration of the angiogenesis
and inflammatory proteome profile in RPE cells, further studies are needed to understand the role
of CYP2E1 in retinal diseases and specifically in outer blood–retinal barrier dysfunction. Herein,
our results demonstrate that human RPE cells have different responses depending on their baseline
oxidative stress levels. At high oxidative stress levels, the induction of CYP2E1 expression and activity
not only by EtOH but also by ROS, would be activating cell death and RPE degeneration promoting
the progression of retinal diseases (Figure 7). If alcohol consumption upregulates CYP2E1 in retinal
tissues in the same way that it does in liver [40,41,65], it should be considered as a risk factor since
it could aggravate retinal degeneration in those patients with high baseline oxidative stress levels
due to their ocular pathology including AMD. On the other hand, because antioxidants such as NAC
and DAS are effective against CYP2E1-mediated deleterious effects, their possible role as adjuvant
therapies in retinal diseases deserves further research.

Antioxidants 2020, 9, x FOR PEER REVIEW 13 of 17 

studied. Thus, the fact that levels of angiogenesis- and inflammation-related factors were modified 

after EtOH-induced oxidative stress in RPE cells, could indicate that CYP2E1 upregulation affects 

RPE function. Although CYP2E1 would play a key role in the generation of ROS and also in the 

alteration of the angiogenesis and inflammatory proteome profile in RPE cells, further studies are 

needed to understand the role of CYP2E1 in retinal diseases and specifically in outer blood–retinal 

barrier dysfunction. Herein, our results demonstrate that human RPE cells have different responses 

depending on their baseline oxidative stress levels. At high oxidative stress levels, the induction of 

CYP2E1 expression and activity not only by EtOH but also by ROS, would be activating cell death 

and RPE degeneration promoting the progression of retinal diseases (Figure 7). If alcohol 

consumption upregulates CYP2E1 in retinal tissues in the same way that it does in liver [40,41,65], it 

should be considered as a risk factor since it could aggravate retinal degeneration in those patients 

with high baseline oxidative stress levels due to their ocular pathology including AMD. On the other 

hand, because antioxidants such as NAC and DAS are effective against CYP2E1-mediated deleterious 

effects, their possible role as adjuvant therapies in retinal diseases deserves further research. 

Figure 7. CYP2E1 induces oxidative stress in retinal pigment epithelium (RPE) cells promoting outer-

blood retinal barrier degeneration. Low levels of ROS in RPE cells activates their antioxidant response 

and cell survival pathways. In contrast, the activation of CYP2E1 by accumulation of ROS induces its 

own regulation, increasing oxidative stress which results in cell death and finally RPE dysfunction. 

Created by BioRender.com. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Mean of pixel 

density of each protein. 

Author Contributions: N.M.-G.: Designed and performed experiments, analysed and interpreted obtained data 

and wrote the paper. L.V.-G., M.F.-B. and R.M.: Performed experiments and analysed obtained data. J.S.-P. and 

J.M.B.: Critically reviewed the data interpretation and the intellectual content of the paper. M.D.-L. reviewed

critically the paper. F.J.R.: Supervised and directed the research and reviewed critically the data interpretation

and the intellectual content of the paper. All authors have read and agreed to the published version of the

manuscript.

Funding: LVG was recipient of a pre-doctoral fellowship (EDUCV-PRE-2015-006). Financial support by grant 

#94/2016 from the PROMETEO program from the Generalitat Valenciana, Valencia, Spain, to FJR. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Strauss, O. The retinal pigment epithelium in visual function. Physiol. Rev. 2005, 85, 845–881.

2. Hamann, S. Molecular mechanisms of water transport in the eye. Int. Rev. Cytol. 2002, 215, 395–431.

3. Kay, P.; Yang, Y.C.; Paraoan, L. Directional protein secretion by the retinal pigment epithelium: roles in

retinal health and the development of age-related macular degeneration. J. Cell. Mol. Med. 2013, 17, 833–

843.

4. Cunha-Vaz, J.; Bernardes, R.; Lobo, C. Blood-retinal barrier. Eur. J. Ophthalmol. 2011 21, S3–S9.

5. Ponnalagu, M.; Subramani, M.; Jayadev, C.; Shetty, R.; Das, D. Retinal pigment epithelium-secretome: A

diabetic retinopathy perspective. Cytokine 2017, 95, 126–135.

Figure 7. CYP2E1 induces oxidative stress in retinal pigment epithelium (RPE) cells promoting
outer-blood retinal barrier degeneration. Low levels of ROS in RPE cells activates their antioxidant
response and cell survival pathways. In contrast, the activation of CYP2E1 by accumulation of ROS
induces its own regulation, increasing oxidative stress which results in cell death and finally RPE
dysfunction. Created by BioRender.com.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/9/776/s1,
Table S1: Mean of pixel density of each protein.

Author Contributions: N.M.-G.: Designed and performed experiments, analysed and interpreted obtained data
and wrote the paper. L.V.-G., M.F.-B. and R.M.: Performed experiments and analysed obtained data. J.S.-P. and
J.M.B.: Critically reviewed the data interpretation and the intellectual content of the paper. M.D.-L. reviewed
critically the paper. F.J.R.: Supervised and directed the research and reviewed critically the data interpretation and
the intellectual content of the paper. All authors have read and agreed to the published version of the manuscript.

Funding: LVG was recipient of a pre-doctoral fellowship (EDUCV-PRE-2015-006). Financial support by grant
#94/2016 from the PROMETEO program from the Generalitat Valenciana, Valencia, Spain, to FJR.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Strauss, O. The retinal pigment epithelium in visual function. Physiol. Rev. 2005, 85, 845–881. [CrossRef]
[PubMed]

2. Hamann, S. Molecular mechanisms of water transport in the eye. Int. Rev. Cytol. 2002, 215, 395–431.
[PubMed]

http://www.mdpi.com/2076-3921/9/9/776/s1
http://dx.doi.org/10.1152/physrev.00021.2004
http://www.ncbi.nlm.nih.gov/pubmed/15987797
http://www.ncbi.nlm.nih.gov/pubmed/11952236


Antioxidants 2020, 9, 776 14 of 17

3. Kay, P.; Yang, Y.C.; Paraoan, L. Directional protein secretion by the retinal pigment epithelium: Roles in
retinal health and the development of age-related macular degeneration. J. Cell. Mol. Med. 2013, 17, 833–843.
[CrossRef] [PubMed]

4. Cunha-Vaz, J.; Bernardes, R.; Lobo, C. Blood-retinal barrier. Eur. J. Ophthalmol. 2011, 21, S3–S9. [CrossRef]
5. Ponnalagu, M.; Subramani, M.; Jayadev, C.; Shetty, R.; Das, D. Retinal pigment epithelium-secretome:

A diabetic retinopathy perspective. Cytokine 2017, 95, 126–135. [CrossRef]
6. Nguyen-Legros, J.; Hicks, D. Renewal of photoreceptor outer segments and their phagocytosis by the retinal

pigment epithelium. Int. Rev. Cytol. 2000, 196, 245–313.
7. Sethna, S.; Chamakkala, T.; Gu, X.; Thompson, T.C.; Cao, G.; Elliott, M.H.; Finnemann, S.C. Regulation

of Phagolysosomal Digestion by Caveolin-1 of the Retinal Pigment Epithelium Is Essential for Vision.
J. Biol. Chem. 2016, 291, 6494–6506. [CrossRef]

8. Thompson, D.A.; Gal, A. Vitamin A metabolism in the retinal pigment epithelium: Genes, mutations, and
diseases. Prog. Retin. Eye Res. 2003, 22, 683–703. [CrossRef]

9. Bavik, C.; Henry, S.H.; Zhang, Y.; Mitts, K.; McGinn, T.; Budzynski, E.; Pashko, A.; Lieu, K.L.; Zhong, S.;
Blumberg, B.; et al. Visual Cycle Modulation as an Approach toward Preservation of Retinal Integrity.
PLoS ONE 2015, 10, e0124940. [CrossRef]

10. Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism
of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in
Adults. Oxid. Med. Cell. Longev. 2016, 2016, 3164734. [CrossRef]

11. Handa, J.T.; Rickman, C.B.; Dick, A.D.; Gorin, M.B.; Miller, J.W.; Toth, C.A.; Ueffing, M.; Zarbin, M.; Farrer, L.A.
A systems biology approach towards understanding and treating non-neovascular age-related macular
degeneration. Nat. Commun. 2019, 10, 3347. [CrossRef] [PubMed]

12. García-Layana, A.; Cabrera-López, F.; García-Arumí, J.; Arias-Barquet, L.; Ruiz-Moreno, J.M. Early and
intermediate age-related macular degeneration: Update and clinical review. Clin. Interv. Aging 2017, 12,
1579–1587. [CrossRef] [PubMed]

13. Ozawa, Y. Oxidative Stress in the RPE and Its Contribution to AMD Pathogenesis: Implication of Light
Exposure. In Neuroprotection and Neuroregeneration for Retinal Diseases; Nakazawa, T.K.Y., Harada, T., Eds.;
Springer: Tokyo, Japan, 2014; pp. 239–253.

14. Kaarniranta, K.; Pawlowska, E.; Szczepanska, J.; Jablkowska, A.; Blasiak, J. Role of Mitochondrial DNA
Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD). Int. J. Mol. Sci. 2019,
20, 2374. [CrossRef] [PubMed]

15. Wooff, Y.; Man, S.M.; Aggio-Bruce, R.; Natoli, R.; Fernando, N. IL-1 Family Members Mediate Cell Death,
Inflammation and Angiogenesis in Retinal Degenerative Diseases. Front. Immunol. 2019, 10, 1618. [CrossRef]
[PubMed]

16. Qiu, Y.; Tao, L.; Lei, C.; Wang, J.; Yang, P.; Li, Q.; Lei, B. Downregulating p22phox ameliorates inflammatory
response in Angiotensin II-induced oxidative stress by regulating MAPK and NF-kappaB pathways in
ARPE-19 cells. Sci. Rep. 2015, 5, 14362. [CrossRef] [PubMed]

17. Klettner, A.; Westhues, D.; Lassen, J.; Bartsch, S.; Roider, J. Regulation of constitutive vascular endothelial
growth factor secretion in retinal pigment epithelium/choroid organ cultures: p38, nuclear factor kappaB,
and the vascular endothelial growth factor receptor-2/phosphatidylinositol 3 kinase pathway. Mol. Vis. 2013,
19, 281–291.

18. Faghiri, Z.; Bazan, N.G. PI3K/Akt and mTOR/p70S6K pathways mediate neuroprotectin D1-induced retinal
pigment epithelial cell survival during oxidative stress-induced apoptosis. Exp. Eye Res. 2010, 90, 718–725.
[CrossRef]

19. Piippo, N.; Korhonen, E.; Hytti, M.; Kinnunen, K.; Kaarniranta, K.; Kauppinen, A. Oxidative Stress is
the Principal Contributor to Inflammasome Activation in Retinal Pigment Epithelium Cells with Defunct
Proteasomes and Autophagy. Cell. Physiol. Biochem. 2018, 49, 359–367. [CrossRef]

20. Eichler, W.; Friedrichs, U.; Thies, A.; Tratz, C.; Wiedemann, P. Modulation of matrix metalloproteinase and
TIMP-1 expression by cytokines in human RPE cells. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2767–2773.

21. Miranda Sanz, M.; Johnson, L.E.; Ahuja, S.; Ekstrom, P.A.R.; Romero, F.J.; Van Veen, T. Significant photreceptor
rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration.
Neuroscience 2007, 145, 1120–1129. [CrossRef]

http://dx.doi.org/10.1111/jcmm.12070
http://www.ncbi.nlm.nih.gov/pubmed/23663427
http://dx.doi.org/10.5301/EJO.2010.6049
http://dx.doi.org/10.1016/j.cyto.2017.02.013
http://dx.doi.org/10.1074/jbc.M115.687004
http://dx.doi.org/10.1016/S1350-9462(03)00051-X
http://dx.doi.org/10.1371/journal.pone.0124940
http://dx.doi.org/10.1155/2016/3164734
http://dx.doi.org/10.1038/s41467-019-11262-1
http://www.ncbi.nlm.nih.gov/pubmed/31350409
http://dx.doi.org/10.2147/CIA.S142685
http://www.ncbi.nlm.nih.gov/pubmed/29042759
http://dx.doi.org/10.3390/ijms20102374
http://www.ncbi.nlm.nih.gov/pubmed/31091656
http://dx.doi.org/10.3389/fimmu.2019.01618
http://www.ncbi.nlm.nih.gov/pubmed/31379825
http://dx.doi.org/10.1038/srep14362
http://www.ncbi.nlm.nih.gov/pubmed/26415877
http://dx.doi.org/10.1016/j.exer.2010.03.002
http://dx.doi.org/10.1159/000492886
http://dx.doi.org/10.1016/j.neuroscience.2006.12.034


Antioxidants 2020, 9, 776 15 of 17

22. Miranda, M.; Arnal, E.; Ahuja, S.; Alvarez-Nölting, R.; Lopez-Pedrajas, R.; Ekstrom, P.; Bosch-Morell, F.; van
Veen, T.; Romero, F.J. Antioxidants rescue photoreceptors in rd1 mice: Relationships with thiol metabolism.
Free Radic. Biol. Med. 2010, 48, 216–222. [CrossRef] [PubMed]

23. Lopez-Malo, D.; Villaron-Casares, C.A.; Alarcon-Jimenez, J.; Miranda, M.; Diaz-Llopis, M.; Romero, F.J.;
Villar, V.M. Curcumin as a therapeutic option in retinal diseases. Antioxidants 2020, 9, 48. [CrossRef]
[PubMed]

24. Du, W.; An, Y.; He, X.; Zhang, D.; He, W. Protection of Kaempferol on Oxidative Stress-Induced Retinal
Pigment Epithelial Cell Damage. Oxid. Med. Cell. Longev. 2018, 2018, 1610751. [CrossRef] [PubMed]

25. Piano, I.; D’Antongiovanni, V.; Testai, L.; Calderone, V.; Gargini, C. A Nutraceutical Strategy to Slowing
Down the Progression of Cone Death in an Animal Model of Retinitis Pigmentosa. Front. Neurosci. 2019, 13,
461. [CrossRef] [PubMed]

26. Cuenca, N.; Fernández-Sánchez, L.; Campello, L.; Maneu, V.; De la Villa, P.; Lax, P.; Pinilla, I. Cellular
responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog. Ret.
Eye Res. 2014, 43, 17–75. [CrossRef] [PubMed]

27. Masuda, T.; Shimazawa, M.; Hara, H. Retinal Diseases Associated with Oxidative Stress and the Effects of a
Free Radical Scavenger (Edaravone). Oxid. Med. Cell. Longev. 2017, 2017, 9208489. [CrossRef]

28. Blasiak, J.; Petrovski, G. Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related
macular degeneration. Biomed. Res. Int. 2014, 2014, 768026. [CrossRef]

29. Wilkinson-Berka, J.L.; Rana, I.; Armani, R.; Agrotis, A. Reactive oxygen species, Nox and angiotensin II in
angiogenesis: Implications for retinopathy. Clin. Sci. 2013, 124, 597–615. [CrossRef]

30. Wang, H.; Han, X.; Wittchen, E.S.; Hartnett, M.E. TNF-alpha mediates choroidal neovascularization by
upregulating VEGF expression in RPE through ROS-dependent beta-catenin activation. Mol. Vis. 2016, 22,
116–128.

31. Aouiss, A.; Anka Idrissi, D.; Kabine, M.; Zaid, Y. Update of inflammatory proliferative retinopathy: Ischemia,
hypoxia and angiogenesis. Curr. Res. Transl. Med. 2019, 67, 62–71. [CrossRef]

32. Papaconstantinou, J. The Role of Signaling Pathways of Inflammation and Oxidative Stress in Development
of Senescence and Aging Phenotypes in Cardiovascular Disease. Cells 2019, 8, 1383. [CrossRef] [PubMed]

33. Pilat, A.; Herrnreiter, A.M.; Skumatz, C.M.; Sarna, T.; Burke, J.M. Oxidative stress increases HO-1 expression
in ARPE-19 cells, but melanosomes suppress the increase when light is the stressor. Investig. Ophthalmol.
Vis. Sci. 2013, 54, 47–56. [CrossRef] [PubMed]

34. Miyamura, N.; Ogawa, T.; Boylan, S.; Morse, L.S.; Handa, J.T.; Hjelmeland, L.M. Topographic and
age-dependent expression of heme oxygenase-1 and catalase in the human retinal pigment epithelium.
Investig. Ophthalmol. Vis. Sci. 2004, 45, 1562–1565. [CrossRef]

35. Singhal, S.S.; Godley, B.F.; Chandra, A.; Pandya, U.; Jin, G.F.; Saini, M.K.; Awasthi, S.; Awasthi, Y.C. Induction
of glutathione S-transferase hGST 5.8 is an early response to oxidative stress in RPE cells. Investig. Ophthalmol.
Vis. Sci. 1999, 40, 2652–2659.

36. Frank, R.N.; Amin, R.H.; Puklin, J.E. Antioxidant enzymes in the macular retinal pigment epithelium of eyes
with neovascular age-related macular degeneration. Am. J. Ophthalmol. 1999, 127, 694–709. [CrossRef]

37. Sun, Y.; Zheng, Y.; Wang, C.; Liu, Y. Glutathione depletion induces ferroptosis, autophagy, and premature
cell senescence in retinal pigment epithelial cells. Cell Death Dis. 2018, 9, 753. [CrossRef]

38. Son, Y.; Kim, S.; Chung, H.T.; Pae, H.O. Reactive oxygen species in the activation of MAP kinases.
Methods Enzymol. 2013, 528, 27–48.

39. Roth, S.; Shaikh, A.R.; Hennelly, M.M.; Li, Q.; Bindokas, V.; Graham, C.E. Mitogen-activated protein kinases
and retinal ischemia. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5383–5395. [CrossRef]

40. Lu, Y.; Cederbaum, A.I. CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 2008, 44, 723–738.
[CrossRef]

41. Yang, L.; Wu, D.; Cederbaum, A.I. CYP2E1, oxidative stress and MAPK signaling pathways in alcohol-induced
hepatotoxicity. J. Biochem. Pharmacol. Res. 2014, 2, 16.

42. Abdelmegeed, M.A.; Choi, Y.; Ha, S.K.; Song, B.J. Cytochrome P450-2E1 promotes aging-related hepatic
steatosis, apoptosis and fibrosis through increased nitroxidative stress. Free Radic. Biol. Med. 2016, 91,
188–202. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.freeradbiomed.2009.10.042
http://www.ncbi.nlm.nih.gov/pubmed/19854264
http://dx.doi.org/10.3390/antiox9010048
http://www.ncbi.nlm.nih.gov/pubmed/31935797
http://dx.doi.org/10.1155/2018/1610751
http://www.ncbi.nlm.nih.gov/pubmed/30584457
http://dx.doi.org/10.3389/fnins.2019.00461
http://www.ncbi.nlm.nih.gov/pubmed/31156364
http://dx.doi.org/10.1016/j.preteyeres.2014.07.001
http://www.ncbi.nlm.nih.gov/pubmed/25038518
http://dx.doi.org/10.1155/2017/9208489
http://dx.doi.org/10.1155/2014/768026
http://dx.doi.org/10.1042/CS20120212
http://dx.doi.org/10.1016/j.retram.2019.01.005
http://dx.doi.org/10.3390/cells8111383
http://www.ncbi.nlm.nih.gov/pubmed/31689891
http://dx.doi.org/10.1167/iovs.12-11153
http://www.ncbi.nlm.nih.gov/pubmed/23221079
http://dx.doi.org/10.1167/iovs.02-0761
http://dx.doi.org/10.1016/S0002-9394(99)00032-X
http://dx.doi.org/10.1038/s41419-018-0794-4
http://dx.doi.org/10.1167/iovs.03-0451
http://dx.doi.org/10.1016/j.freeradbiomed.2007.11.004
http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.016
http://www.ncbi.nlm.nih.gov/pubmed/26703967


Antioxidants 2020, 9, 776 16 of 17

43. Leung, T.; Rajendran, R.; Singh, S.; Garva, R.; Krstic-Demonacos, M.; Demonacos, C. Cytochrome P450 2E1
(CYP2E1) regulates the response to oxidative stress and migration of breast cancer cells. Breast Cancer Res.
2013, 15, R107. [CrossRef] [PubMed]

44. Fernandes, G.M.; Russo, A.; Proença, M.A.; Gazola, N.F.; Rodrigues, G.H.; Biselli-Chicote, P.M.; Silva, A.E.;
Netinho, J.G.; Pavarino, É.C.; Goloni-Bertollo, E.M. CYP1A1, CYP2E1 and EPHX1 polymorphisms in sporadic
colorectal neoplasms. World J. Gastroenterol. 2016, 22, 9974–9983. [CrossRef] [PubMed]

45. Feng, J.; Pan, X.; Yu, J.; Chen, Z.; Xu, H.; El-Rifai, W.; Zhang, G.; Xu, Z. Functional PstI/RsaI polymorphism in
CYP2E1 is associated with the development, progression and poor outcome of gastric cancer. PLoS ONE
2012, 7, e44478. [CrossRef] [PubMed]

46. García-Suástegui, W.A.; Ramos-Chávez, L.A.; Rubio-Osornio, M.; Calvillo-Velasco, M.; Atzin-Méndez, J.A.;
Guevara, J.; Silva-Adaya, D. The Role of CYP2E1 in the Drug Metabolism or Bioactivation in the Brain.
Oxid. Med. Cell. Longev. 2017, 2017, 4680732. [CrossRef]

47. Martinez-Gil, N.; Flores-Bellver, M.; Atienzar-Aroca, S.; Lopez-Malo, D.; Urdaneta, A.C.; Sancho-Pelluz, J.;
Peris-Martínez, C.; Bonet-Ponce, L.; Romero, F.J.; Barcia, J.M. CYP2E1 in the Human Retinal Pigment
Epithelium: Expression, Activity, and Induction by Ethanol. Investig. Ophthalmol. Vis. Sci. 2015, 56,
6855–6863. [CrossRef]

48. Flores-Bellver, M.; Bonet-Ponce, L.; Barcia, J.M.; Garcia-Verdugo, J.M.; Martinez-Gil, N.; Saez-Atienzar, S.;
Sancho-Pelluz, J.; Jordan, J.; Galindo, M.F.; Romero, F.J. Autophagy and mitochondrial alterations in human
retinal pigment epithelial cells induced by ethanol: Implications of 4-hydroxy-nonenal. Cell Death Dis. 2014,
5, e1328. [CrossRef]

49. Jin, M.; Ande, A.; Kumar, A.; Kumar, S. Regulation of cytochrome P450 2e1 expression by ethanol: Role of
oxidative stress-mediated pkc/jnk/sp1 pathway. Cell Death Dis. 2013, 4, e554. [CrossRef]

50. Maisto, R.; Oltra, M.; Vidal-Gil, L.; Martínez-Gil, N.; Sancho-Pellúz, J.; Filippo, C.D.; Rossi, S.; Amico, M.D.;
Barcia, J.M.; Romeroc, F.J. ARPE-19-derived VEGF-containing exosomes promote neovascularization in
HUVEC: The role of the melanocortin receptor 5. Cell Cycle 2019, 18, 413–424. [CrossRef]

51. Atienzar-Aroca, S.; Flores-Bellver, M.; Serrano-Heras, G.; Martinez-Gil, N.; Barcia, J.M.; Aparicio, S.;
Perez-Cremades, D.; Garcia-Verdugo, J.M.; Diaz-Llopis, M.; Romero, F.J.; et al. Oxidative stress in retinal
pigment epithelium cells increases exosome secretion and promotes angiogenesis in endothelial cells. J. Cell.
Mol. Med. 2016, 20, 1457–1466. [CrossRef]

52. Goldman, C.K.; Kendall, R.L.; Cabrera, G.; Soroceanu, L.; Heike, Y.; Gillespie, G.Y.; Siegal, G.P.; Mao, X.;
Bett, A.J.; Huckle, W.R.; et al. Paracrine expression of a native soluble vascular endothelial growth factor
receptor inhibits tumor growth, metastasis, and mortality rate. Proc. Natl. Acad. Sci. USA 1998, 95, 8795–8800.
[CrossRef] [PubMed]

53. He, X.; Cheng, R.; Benyajati, S.; Ma, J.X. PEDF and its roles in physiological and pathological conditions:
Implication in diabetic and hypoxia-induced angiogenic diseases. Clin. Sci. 2015, 128, 805–823. [CrossRef]
[PubMed]

54. Zhang, S.X.; Wang, J.J.; Gao, G.; Shao, C.; Mott, R.; Ma, J.X. Pigment epithelium-derived factor (PEDF) is an
endogenous antiinflammatory factor. FASEB J. 2006, 20, 323–325. [CrossRef] [PubMed]

55. Bandyopadhyay, M.; Rohrer, B. Matrix metalloproteinase activity creates pro-angiogenic environment in
primary human retinal pigment epithelial cells exposed to complement. Investig. Ophthalmol. Vis. Sci. 2012,
53, 1953–1961. [CrossRef] [PubMed]

56. Chau, K.Y.; Sivaprasad, S.; Patel, N.; Donaldson, T.A.; Luthert, P.J.; Chong, N.V. Plasma levels of matrix
metalloproteinase-2 and -9 (MMP-2 and MMP-9) in age-related macular degeneration. Eye 2007, 21, 1511–1515.
[CrossRef]

57. Kernt, M.; Hirneiss, C.; Wolf, A.; Liegl, R.; Rueping, J.; Neubauer, A.; Alge, C.; Ulbig, M.;
Gandorfer, A.; Kampik, A. Indocyanine green increases light-induced oxidative stress, senescence, and
matrix metalloproteinases 1 and 3 in human RPE cells. Acta Ophthalmol. 2012, 90, 571–579. [CrossRef]

58. Demeestere, D.; Dejonckheere, E.; Steeland, S.; Hulpiau, P.; Haustraete, J.; Devoogdt, N.; Wichert, R.;
Becker-Pauly, C.; van Wonterghem, E.; Dewaele, S.; et al. Development and validation of a small single-domain
antibody that effectively inhibits matrix metalloproteinase 8. Mol. Ther. 2016, 24, 890–902. [CrossRef]

59. Abu El-Asrar, A.M.; Mohammad, G.; Nawaz, M.I.; Siddiquei, M.M.; Van den Eynde, K.; Mousa, A.;
Hertogh, G.D.; Opdenakker, G. Relationship between vitreous levels of matrix metalloproteinases and
vascular endothelial growth factor in proliferative diabetic retinopathy. PLoS ONE 2013, 8, e85857. [CrossRef]

http://dx.doi.org/10.1186/bcr3574
http://www.ncbi.nlm.nih.gov/pubmed/24207099
http://dx.doi.org/10.3748/wjg.v22.i45.9974
http://www.ncbi.nlm.nih.gov/pubmed/28018104
http://dx.doi.org/10.1371/journal.pone.0044478
http://www.ncbi.nlm.nih.gov/pubmed/22957075
http://dx.doi.org/10.1155/2017/4680732
http://dx.doi.org/10.1167/iovs.14-16291
http://dx.doi.org/10.1038/cddis.2014.288
http://dx.doi.org/10.1038/cddis.2013.78
http://dx.doi.org/10.1080/15384101.2019.1568745
http://dx.doi.org/10.1111/jcmm.12834
http://dx.doi.org/10.1073/pnas.95.15.8795
http://www.ncbi.nlm.nih.gov/pubmed/9671758
http://dx.doi.org/10.1042/CS20130463
http://www.ncbi.nlm.nih.gov/pubmed/25881671
http://dx.doi.org/10.1096/fj.05-4313fje
http://www.ncbi.nlm.nih.gov/pubmed/16368716
http://dx.doi.org/10.1167/iovs.11-8638
http://www.ncbi.nlm.nih.gov/pubmed/22408008
http://dx.doi.org/10.1038/sj.eye.6702722
http://dx.doi.org/10.1111/j.1755-3768.2010.01961.x
http://dx.doi.org/10.1038/mt.2016.2
http://dx.doi.org/10.1371/journal.pone.0085857


Antioxidants 2020, 9, 776 17 of 17

60. Tah, V.; Orlans, H.O.; Hyer, J.; Casswell, E.; Din, N.; Sri Shanmuganathan, V.; Ramskold, L.; Pasu, S.
Anti-VEGF therapy and the retina: An update. J. Ophthalmol. 2015, 2015, 627674. [CrossRef]

61. Chen, Q.; Cederbaum, A.I. Cytotoxicity and apoptosis produced by cytochrome P450 2E1 in Hep G2 cells.
Mol. Pharmacol. 1998, 53, 638–648. [CrossRef]

62. Ablonczy, Z.; Prakasam, A.; Fant, J.; Fauq, A.; Crosson, C.; Sambamurti, K. Pigment epithelium-derived
factor maintains retinal pigment epithelium function by inhibiting vascular endothelial growth factor-R2
signaling through gamma-secretase. J. Biol. Chem. 2009, 284, 30177–30186. [CrossRef] [PubMed]

63. Subramanian, P.; Locatelli-Hoops, S.; Kenealey, J.; DesJardin, J.; Notari, L.; Becerra, S.P. Pigment
epithelium-derived factor (PEDF) prevents retinal cell death via PEDF Receptor (PEDF-R): Identification of a
functional ligand binding site. J. Biol. Chem. 2013, 288, 23928–23942. [CrossRef] [PubMed]

64. Prosser, H.C.; Tan, J.T.; Dunn, L.L.; Patel, S.; Vanags, L.Z.; Bao, S.; Ng, M.K.C.; Bursill, C.A. Multifunctional
regulation of angiogenesis by high-density lipoproteins. Cardiovasc. Res. 2014, 101, 145–154. [CrossRef]
[PubMed]

65. Lu, Y.; Cederbaum, A.I. CYP2E1 potentiation of LPS and TNFα-induced hepatotoxicity by mechanisms
involving enhanced oxidative and nitrosative stress, activation of MAP kinases, and mitochondrial
dysfunction. Genes Nutr. 2010, 5, 149–167. [CrossRef] [PubMed]

66. Zordoky, B.N.; El-Kadi, A.O. Role of NF-kappaB in the regulation of cytochrome P450 enzymes.
Curr. Drug Metab. 2009, 10, 164–178. [CrossRef] [PubMed]

67. Dellinger, M.T.; Brekken, R.A. Phosphorylation of Akt and ERK1/2 is required for VEGF-A/VEGFR2-induced
proliferation and migration of lymphatic endothelium. PLoS ONE 2011, 6, e28947. [CrossRef]

68. Cao, G.; Chen, M.; Song, Q.; Liu, Y.; Xie, L.; Han, Y.; Liu, Z.; Ji, Y.; Jiang, Q. EGCG protects against
UVB-induced apoptosis via oxidative stress and the JNK1/c-Jun pathway in ARPE19 cells. Mol. Med. Rep.
2012, 5, 54–59.

69. Du, H.; Sun, X.; Guma, M.; Luo, J.; Ouyang, H.; Zhang, H.; Zeng, J.; Quach, J.; Nguyen, D.H.; Shaw, P.X.;
et al. JNK inhibition reduces apoptosis and neovascularization in a murine model of age-related macular
degeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 2377–2382. [CrossRef]

70. Papa, S.; Zazzeroni, F.; Pham, C.G.; Bubici, C.; Franzoso, G. Linking JNK signaling to NF-kappaB: A key to
survival. J. Cell Sci. 2004, 117, 5197–5208. [CrossRef]

71. Bellezza, I. Oxidative Stress in Age-Related Macular Degeneration: Nrf2 as Therapeutic Target.
Front. Pharmacol. 2018, 9, 1280. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2015/627674
http://dx.doi.org/10.1124/mol.53.4.638
http://dx.doi.org/10.1074/jbc.M109.032391
http://www.ncbi.nlm.nih.gov/pubmed/19723623
http://dx.doi.org/10.1074/jbc.M113.487884
http://www.ncbi.nlm.nih.gov/pubmed/23818523
http://dx.doi.org/10.1093/cvr/cvt234
http://www.ncbi.nlm.nih.gov/pubmed/24130189
http://dx.doi.org/10.1007/s12263-009-0150-5
http://www.ncbi.nlm.nih.gov/pubmed/19798529
http://dx.doi.org/10.2174/138920009787522151
http://www.ncbi.nlm.nih.gov/pubmed/19275551
http://dx.doi.org/10.1371/journal.pone.0028947
http://dx.doi.org/10.1073/pnas.1221729110
http://dx.doi.org/10.1242/jcs.01483
http://dx.doi.org/10.3389/fphar.2018.01280
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Cell Culture and Treatments 
	Determination of ROS Levels 
	Cell Viability 
	Proteome Profiling 
	Matrix Metalloproteinases ELISA 
	Western Blotting 
	Quantitative Real Time PCR (RT-qPCR) 
	Statistical Analysis 

	Results 
	EtOH Induces ROS Accumulation in RPE Cells Promoting Death 
	Ethanol Altered the Inflammation and Angiogenesis-Related Proteome Profile in Human RPE Cells 
	Ethanol Modified Matrix Metalloproteinases Levels in Human RPE Cells 
	Ethanol Modified the Upstream and Downstream Angiogenesis Regulators in RPE Cells 
	CYP2E1 Upregulation Promotes Cell Death via Oxidative Stress Induction 
	CYP2E1 Upregulation Modulates the Upstream Angiogenesis and Inflammation Regulators in RPE Cells 

	Discussion 
	References

