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Abstract

Autophagy and exosome secretion play important roles in a variety of physiological

and disease states, including the development of age-related macular degeneration.

Previous studies have demonstrated that these cellular mechanisms share common

pathways of activation. Low oxidative damage in ARPE-19 cells, alters both autop-

hagy and exosome biogenesis. Moreover, oxidative stress modifies the protein and

genetic cargo of exosomes, possibly affecting the fate of surrounding cells. In order

to understand the connection between these two mechanisms and their impact on

angiogenesis, stressed ARPE-19 cells were treated with a siRNA-targeting Atg7, a

key protein for the formation of autophagosomes. Subsequently, we observed the

formation of multivesicular bodies and the release of exosomes. Released exosomes

contained VEGFR2 as part of their cargo. This receptor for VEGF—which is critical

for the development of new blood vessels—was higher in exosome populations

released from stressed ARPE-19. While stressed exosomes enhanced tube forma-

tion, exosomes became ineffective after silencing VEGFR2 in ARPE-19 cells and

were, consequently, unable to influence angiogenesis. Moreover, vessel sprouting in

the presence of stressed exosomes seems to follow a VEGF-independent pathway.

We propose that abnormal vessel growth correlates with VEGFR2-expressing exo-

somes release from stressed ARPE-19 cells, and is directly linked to autophagy.
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1 | INTRODUCTION

The retinal pigment epithelium (RPE) is a monolayer of cells highly

vulnerable to oxidative stress (OS), particularly to reactive oxygen

species (ROS).1 It has been observed that excessive ROS formation

in RPE cells can deregulate other physiological mechanisms, such as

autophagy.2,3 Autophagy is a degradative process that maintains

cellular homeostasis by selectively eliminating damaged organelles,

proteins and cellular debris.4,5 Macroautophagy (from now on

referred just as autophagy) eliminates damaged material creating a

double-membrane vesicle known as the autophagosome, which is

delivered to the lysosome for degradation.6 A number of proteinsAtienzar-Aroca and Serrano-Heras contributed equally to this work.
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are involved in the activation of autophagy, including Beclin-1,

autophagy-related proteins (Atg) 5-12 and microtubule-associated

protein 1A/1B-light chain 3 (LC3), which passes from form I to

form II in the autophagosome membrane.7 Autophagy takes place

naturally in cells, but can be enhanced in response to cellular stress,

such as damaged DNA and excessive ROS.8 Consistently, overpro-

duction of ROS due to ethanol (EtOH)-induced damage, generates

more autophagosomes.3 Moreover, expression of cell death mark-

ers, such as Bax, seems to be enhanced in a concentration-depen-

dent manner.2

Communication between RPE cells, endothelial cells (ECs) of

the choriocapillaris and photoreceptor cells is crucial for the

proper maintenance of visual homeostasis and retinal functions.

Exosomes, extracellular vesicles (EVs) which range in diameter

from 30 to 100 nm,9 are essential in cell-to-cell communication as

their cargo contain genetic material and a number of proteins,

which may be delivered into neighbouring cells.10 Invaginations in

the late endosome membrane fills it with intraluminal vesicles

(ILV), generating a multivesicular body (MVB),11 which might fuse

with autophagosomes or lysosomes, resulting in the degradation

of the vesicles.12 However, when an MVB fuses with the cell

membrane, it releases the ILVs, now exosomes, to the extracellular

medium.13 Exosomes are found in most corporal fluids, including

blood, saliva, breast milk and aqueous humour.14-17 Under stress,

RPE cells release an elevated number of exosomes, which contain

a different cargo from that observed in exomes derived from

healthy RPE.17-19

Moreover, increased production of ROS in the RPE generates

overproduction of vascular endothelial growth factor (VEGF) and

subsequent accelerated angiogenesis in the choroid.20,21 We

observed that stressed RPE cells release a higher fraction of exo-

somes with VEGF receptor 2 (VEGFR2) in their membrane. When

EC cultures were treated with such exosomes, the formation of new

blood vessels was accelerated.19

Correlations between autophagy and exosome release have been

already suggested.22-24 Interestingly, it was proposed that the inter-

action between autophagic vacuoles and MVBs contributes to the

removal of superfluous organelles and proteins.25 In fact, enhanced

ROS increases the number of MVBs, which can be released or com-

bined with lysosomes or autophagosomes, forming the amphisome,

thus degrading their content.26 Hence, overproduction of ROS

increases autophagy activity and exosome release.

Exosomes have been observed in the extracellular medium of

ARPE-19, a human RPE cell line. When ARPE-19 cells were chal-

lenged, they released a larger number of exosomes containing pro-

autophagy factors such as Atg5-Atg12 and Beclin-1.18 Furthermore,

in a model of age-related macular degeneration (AMD), it has been

proposed that exosomes released by stressed RPE cells are able to

increase autophagy in other cells, and that this can contribute to

drusen formation, an early symptom of AMD.22 It has been recently

hypothesized that exosomes and autophagy work in concert to

maintain cellular homeostasis.23 Conversely, the release of exosomes

has been shown to damage neighbouring cells.27

In the present study, we intend to establish a link between two

phenomena: autophagy and exosome release in RPE cells under

OS. We also aim to study the contribution of these two cellular

mechanisms to the regulation of angiogenesis. In a physiological

environment, there is equilibrium between angiogenic activators

and inhibitors, resulting in very limited new blood vessel formation.

Nevertheless, angiogenic stimulators can break the balance in a

number of visual conditions, such as AMD and diabetic retinopathy

(DR).28,29

In summary, induction of low oxidative stress in RPE cells over-

activates autophagy and enhances the number of exosomes released

to the extracellular medium. Under such stress conditions, the frac-

tion of RPE exosomes containing VEGFR2 is augmented, causing

ECs to migrate and form new blood vessels. Thus, abnormal blood

vessel formation might be affected by exosomes released from dam-

aged RPE.

2 | MATERIAL AND METHODS

2.1 | Cell culture and treatments

Human retinal pigment epithelial (ARPE-19) cell line was obtained

from the American Type Culture Collection (ATCC). ARPE-19 cells

were cultured in Dulbecco’s modified Eagle’s DMEM/F12 (Invitro-

gen, Carlsbad, CA, USA), as previously performed.19 Cells were

used from passages higher than 20. Depending on the technique,

cells were cultured in P-100 well plate at a starting seed density

of 1 9 106 cells/well. After 2 days, at 80% of confluency, cells

were treated for 24 hours at different EtOH concentrations.

Previous studies have shown that a concentration of 80 mmol/L

was sufficient to generate OS, autophagy and a peak of exo-

some release from ARPE-19 cells, and that above 600 mmol/L,

OS and autophagy were considerably enhanced and cells begin to

die.2,3,19

Human umbilical vein endothelial cells (HUVEC) were isolated as

described previously.30 Briefly, umbilical veins were perfused with

1% collagenase solution and incubated at 37°C for 15 minutes.

Endothelial cells were recovered in specific endothelial growth med-

ium (ENDOPAN) (Lonza, Cultek, Barcelona, Spain). For all experi-

ments, HUVEC growth in 2% FBS growth factor-free Endopan

medium.

2.2 | Exosome isolation and size-distribution

First, culture supernatant was centrifuged at 700 g for 30 minutes

(18-20°C). The pellet was removed and the supernatant centrifuged

again at 14 000 g for 30 minutes. Then, the supernatant was cen-

trifuged at 40 000 g for 30 minutes. Subsequently, the supernatant

was centrifuged at 120 000 g for 90 minutes (18-20°C). Finally, the

supernatant was removed and the pellet stored at 4°C until further

processing. Exosome identity was confirmed by the nanoparticle

tracking system NanoSight NS300 following manufacturer protocols

(Malvern Instruments, Malvern, UK).
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2.3 | Protein extraction

For protein extraction, cells were treated with trypsin and lysed with

RIPA buffer and protease inhibitor cocktail (Sigma-Aldrich, St. Louis,

MO, USA) and sonicated 3 cycles. Then, the samples were centrifu-

gated at 8000 g during 5 minutes. The supernatant was collected

and stored at �20°C until further processing. Total protein concen-

tration was analysed with BCA Protein Assay Kit (Thermo Fisher,

Waltham, MA, USA).

2.4 | Western blot analysis

Equal amount of protein from each sample (35 mg) was measured

by SDS-PAGE on 4-12% gels and electroblotted onto polyvinylidene

difluoride membranes (Millipore, Billerica, MA, USA). Membranes

were incubated overnight at 4°C with rabbit polyclonal antibodies:

Bax (1:250; Santa Cruz Biotechnology, Santa Cruz, CA, USA), LC3

(1:1000; Sigma-Aldrich), mouse monoclonal antibody against b-actin

(1:500; Santa Cruz), GAPDH (1:1000; Santa Cruz), p62 (1:1000; Cell

Signaling, Boston, USA), VEGFR2 and p-VEGFR2 (1:500 Cell Signal-

ing) and Apg12 (1:500 Abcam, Cambridge, MA, USA). Subsequently,

membranes were incubated 2 hours at room temperature (RT) in

horseradish peroxidase-conjugated anti-mouse and anti-rabbit IgG

(1:10000; Santa Cruz). Bands were visualized with ECL (Thermo

Fisher) and detected with Image Quant LAS-4000 mini (GE Health-

care). Protein levels were quantified by densitometry using ImageJ

software (National Institutes of Health). Protein expression intensity

was normalized to b-actin or GAPDH.

2.5 | Electron microscopy

ARPE-19 cells were seeded at a density of 3 9 104 cells/well in 8-

well Lab-Tek chamber slides (Nalge Nunc Int., Roskilde, Denmark)

and fixed in 3.5% glutaraldehyde for 1 hour at 37°C. Then, cells

were postfixed in 2% OsO4 for 1 hour at RT and stained with 2%

uranyl acetate in the dark for 2 hours at 4°C. Finally, cells were

rinsed in 0.1 mol/L PBS, dehydrated in EtOH and infiltrated over-

night with Araldite (Durcupan, Fluka, Heidelberg, Germany). Follow-

ing polymerization, serial semithin (1.5 lm) sections were cut with

an Ultracut UC-6 microtome (Leica Microsystems, Wetzlar, Ger-

many), mounted onto slides and stained with 1% toluidine blue.

Selected sections were glued (Super Glue, Loctite, Westlake, OH,

USA) to araldite blocks and detached from the glass slide by

repeated freezing (in liquid nitrogen) and thawing. Ultrathin (0.06-

0.09 lm) sections were prepared on the Ultracut microtome and

stained with lead citrate. Calculations were made after observing 7

cells per condition.

2.6 | Quantitative analysis of exosomes by flow
cytometry

Flow cytometry is an exceptional method to detect, quantify and

characterize EVs. The small size and dim signal from most vesicles

challenge the sensitivity of flow cytometry. Indeed, several laborato-

ries have reported that 0.5 lm is the cutoff value for accurately

identifying extracellular vesicles using previous generation flow

cytometers.31 However, the use of new digital flow cytometers have

allowed to detect EVs below this limit, thereby providing access to

measurement of vesicles subpopulations of smaller size.32 In the pre-

sent study, we aimed to perform a quantification and characteriza-

tion of surface protein expression of exosomes released from RPE

cells. To this end, we used a new generation of flow cytometer,

FACS Canto II (BD, Beckton Dickinson, Franklin Lakes, NJ, USA),

which incorporates 2 air-cooled lasers at 488- and 633-nm wave-

lengths, and the BD FACSDiva TM software. Briefly, for each analy-

sis 50 lL of isolated exosomes were suspended in 450-lL filtered

PBS and 2 lL of the corresponding non-fluorophore-conjugated pri-

mary antibody (VEGFR-2, Apg12, Beclin-1 [Abcam], p62 [Cell Signal-

ing], Bax and Bcl-2 [Santa Cruz]) was added and incubated for

1 hour at room temperature (RT) on rotating wheel. Subsequently,

the exosomes samples were labelled by adding 2 lL of either FITC-

conjugated or PerCP-conjugated secondary antibody (Immunostep,

Salamanca, Spain) for 30 minutes at RT under rotation in the dark-

ness. Then, exosomes were costained with APC-conjugated antiCD9

(Abcam), an exosomal marker, during 1 hour at RT. Finally, the cola-

belled exosome samples were ultracentrifugated during 90 minutes

at 120 000 g with PBS. The supernatant (containing unbound anti-

bodies) was discard and exosomes pellets were resuspended in fil-

tered PBS and deposited on the Flow cytometry tubes for analysis.

A mix of size-calibrated fluorescent polystyrene beads with diame-

ters of 220, 450 and 880 nm (Spherotech Inc., Lake Forest, IL, USA)

was used to select optimal instrument settings and gate. Logarithmic

amplification was used for all channels (the voltages of FSC, SSC,

FITC, PerCP-Cy5-5 and APC were 800, 450, 550, 470 and

500 Volts, respectively) and unstained exosomes were used as nega-

tive control. The upper and the outer limit of the exosomes gate

was established just above the size distribution of the 220-nm beads

in a forward (FSC-A) and side scatter (SSC-A) setting (log scale),

whereas the lower limit was the noise threshold of the instrument.

In addition, a fluorescence threshold was set at 200 Volts for APC

(fluorophore covalently attached to antibody that bind exosome-

specific antigen, CD9) parameter in order to separate true events

from background noise caused by PBS. All samples were run with a

medium flow rate of 60 lL/min and the single positive events for

CD9 and double positive events for CD9-specific surface protein

were counted after 2 minutes of acquisition.

2.7 | ATG7 silencing

Silencing mix was prepared with 500 and 2.5 lL of RNAiMAX

(Thermo Fisher) per well. Subsequently, 0.75 lL of a siRNA for

Atg7 20 lmol/L was added. Meanwhile, 150 000 ARPE-19 cells/

well were plated in a 6-well plate, and 500 lL of the silencing mix

were added. After 24 hours medium was changed to a normal

growth medium. After 48 and 72 hours, cells and medium were

collected.
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2.8 | Tube formation assay

The day before seeding the cells, the growth factor-reduced Matrigel (BD

Biosciences) was placed on ice in the refrigerator at 4°C and cultured

HUVEC were starved overnight. The following day, 10 lL of gel were

applied to each inner well of a l-slide Angiogenesis (Ibidi, Martinsried,

Germany). The whole assembly was placed into the incubator for poly-

merization (30-60 min). In the meantime, the cell suspension of HUVEC

was prepared (PromoCell, C-12200, C-12203); 10 000 cells/well with

starvation medium were arranged and 5 exosomes/cell were added to

corresponding wells. After 4 hours, pictures were taken in a bright-field

microscope (Zeiss Axiovert 200 mol/L with 5x/0.16 Plan-NEOFLUAR

objective). Total tube length was quantified by Image J software.

When stated, 1 lg/mL recombinant Flt1/Fc (R&D Systems, 471-

F1) was added to the cell suspension to trap VEGF. After 1 hour,

five exosomes/cell were added to corresponding wells. After

4 hours, pictures were taken under the microscope.

2.9 | VEGFR2 silencing

siRNA transfection of HUVEC was performed with Oligofectamine

Reagent (Invitrogen) following manufacturer’s instructions. Briefly,

110 000 HUVECs/well were cultured. After 24 hours, the cells were

transfected with a final siRNA concentration of 200 nmol/L. Human

VEGFR2 siRNA (50-30se-GUCCCUCAGUGAUGUAGAA, as-UUCUA-

CAUCACUGAGGGAC) and MISSION siRNA (universal negative con-

trol) were obtained from Sigma-Aldrich. After 4 hours of incubation,

the medium was changed for 2 mL of normal growth medium.

For silencing VEGFR2 in ARPE-19 cells the protocol was the

same, but 1 9 106 cells were seeded in a P100 well plate until con-

fluency. Forty-eight hours after the silencing process, exosomes from

the medium were isolated.

2.10 | Sprouting assay

Fibrin gel bead sprouting assay was performed as previously

described.33 Briefly, Cytodex�3 microcarrier beads (GE Healthcare)

were coated with siRNA-transfected HUVECs (at ratio of

200 000 cells/1000 beads) and embedded in fibrin gels in a 24-well

plate. HUVEC-coated beads were cultured in 2% FBS growth factor-

free Endopan medium for 24 hours. Then, 5 exosomes/cell were

added to corresponding wells and incubated for 4 hours. Wells in

presence or absence of VEGF were used as positive or negative con-

trol, respectively. Images were obtained with a Zeiss LSM 510 META

confocal microscope (10x) and quantification was done with ImageJ.

3 | RESULTS

3.1 | Formation of MVBs and amphisomes after OS
damage and inhibition of autophagy

Formation of MVBs and amphisomes were detected in control (un-

treated) and stressed (treated with EtOH) ARPE-19 cells under

electron microscopy (Figure 1A). Low-stressed RPE cells (treated

with 80 mmol/L EtOH) presented a greater number of MVBs than

control cells, whereas the level of amphisomes was similar to that

observed in untreated cells. High-stress RPE cells (600 mmol/L) pre-

sented MVBs at control levels, but the formation of amphisomes

increased more than four-fold (Figure 1B). When ARPE-19 cells were

cultured with a siRNA targeting Atg7 (Atg7 siRNA), autophagy was

repressed, less MVBs were observed in control and low-stressed

cells, and the formation of amphisomes augmented significantly in

both cases (Figure 1A,B).

Expression of BAX and p62, proteins related to apoptosis and

autophagy, respectively, was studied in control and stressed cells

(Figure 1C). p62 was significantly reduced in high-stressed cells, but

the difference was not significant at low concentrations of treat-

ment. Under stress, ARPE-19 cells BAX expression increased in a

concentration-dependent manner. Expression of Atg12—a key pro-

tein for the generation of the autophagosome—was examined

revealing that the level of Atg12 also increased in a concentration-

dependent manner (Figure 1D). Successful inhibition of autophagy

was observed by Western blot analysis of LC3-I and LC3-II and p62,

at 72 hours after treating with Atg7 siRNA (Figure 1E,F).

Altogether, these results suggest that low and high OS acceler-

ates the formation of MVBs and amphisomes in ARPE-19 cells, and

that, when Atg7 is silenced, the presence of both organelles is dra-

matically reduced. MVBs might fuse with the membrane, releasing

their content to the extracellular medium, or they can be digested

by autophagosomes, forming the amphisomes. When formation of

autophagosomes is blocked (by Atg7 siRNA), it seems that MVBs are

disintegrated via another pathway, mostly by direct degradation by

lysosomes,23 not being able to release their exosomes.

3.2 | Oxidative stress and autophagy influence
exosome release in RPE cells

ARPE-19 cells released EVs which were monitored by the nanoparti-

cle tracking system NanoSight, by observation under electron micro-

scopy (see Figure S1), and by flow cytometry (Figures 2 and S2). OS,

induced by EtOH, seemed to influence the release of EVs in ARPE-

19 cells. Apparently, at low concentrations of EtOH, the number of

released exosomes increased. Moreover, a peak of exosomes was

observed when cells were treated with 80 mmol/L EtOH for

24 hours (Figure 2A). At higher concentrations (200, 600 and

800 mmol/L), the release of exosomes was attenuated. These data

justify the use of low concentrations of EtOH throughout the rest of

the study.

Since their cargo is variable and dependent on homeostasis, exo-

somes released from healthy and stressed RPE cells were analysed.

Exosomes containing markers for apoptosis (BAX, Bcl-2) and autop-

hagy (Atg12, p62 and Beclin-1) were observed by flow cytometry

and Western blot (see Figures S2, S3 and S4). Electron microscopy

showed that the size of exosomes from control and stressed cells

were very similar (Figure S5). The number of Bax-positive exo-

somes/mL seemed to be higher in EVs released from stressed cells
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(Figure 2B, left panel). This might be due to the higher amount of

EVs released by RPE cells when confronting OS (as aforementioned).

Nevertheless, the fraction of BAX-positive exosomes (ratio BAX/

CD9) was lower when RPE cells were stressed with a low EtOH con-

centration, and significantly higher when cells were treated with

higher concentrations (Figure 2B, right panel). The antiapoptotic

F IGURE 1 Ultrastructural changes, apoptosis and autophagy in stressed ARPE-19 cells. A, Photographs of control and treated ARPE-19
cells were taken under the electron microscope. Atg7 siRNA was applied to control and stressed ARPE-19 cultures. MVBs (arrows) and
amphisomes (arrowheads) were observed in every case. B, Relative quantification of MVBs and amphisomes in the aforementioned culture
types. C, Relative expression levels of p62 and Bax in ARPE-19 cells untreated, treated with low (80 mmol/L) and high (600 mmol/L)
concentrations of EtOH. D, Relative expression levels of Atg12 in ARPE-19 cells untreated and treated with low and high EtOH
concentrations. siRNA-Atg7 trial: (E) 72 hours relative protein and (F) mRNA levels of LC3-II and p62 before and after applying siRNA-Atg7
(for 48 and 72 hours). Scale bars: 10 lm (upper panels), 500 nm (centre and bottom panels). Values are expressed as mean � SEM (N ≥ 3).
Significance levels: (when compared to control) P < .05 (*), P < .01 (**) and P < .001 (***); (when compared to treated with 80 mmol/L group)
P < .05 (#) and P < .001 (###)
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protein Bcl-2 appeared to be elevated in stressed conditions, when

total EVs/mL were studied (Figure 2B, left panel). However, when

low stress was applied, the Bcl-2 fraction was significantly lower

(Figure 2B, right panel). At high stress conditions, the fraction of Bcl-

2-positive exosomes did not differ from the control set (Figure 2B).

Additionally, proteins necessary for the formation of the autophago-

some—Atg12, p62 and Beclin-1—were tracked. The total amount of

exosomes expressing Atg12 was increased by three-fold in culture

medium of low-stressed ARPE-19 cells, and by two-fold in medium

of high-stressed cells (Figure 2B, left panel). The ratio Atg12/CD9

was also raised under low- and high-stress conditions (Figure 2B,

right panel).

When autophagy was inhibited by Atg7 siRNA, exosome release

was also decreased, in stressed and nonstressed ARPE-19 cells (Fig-

ure 2C). Surprisingly, the fraction of released exosomes p62-positive

increased dramatically after Atg7 interference in control and stressed

RPE cells (Figure 2D). However, Beclin-1/CD9 ratio was drastically

reduced after treatment with Atg7 siRNA, whether the cells were

stressed or not (Figure 2E).

Increasing evidence indicates that impaired autophagy is associ-

ated with angiogenesis, both in the development of the chicken

embryo,34 where Atg7 plays an important role, as in the choroidal

RF/6A cells, where hypoxia-induced autophagy stimulates EC

growth.35

It is already known that the stress caused by EtOH at low con-

centrations induces autophagy2 and increases the expression of

VEGFR219 (Figure 3A), we therefore silenced Atg7 in ARPE-19 cells

and analysed the expression of VEGFR2 both in cells and in the exo-

somes obtained from the medium. Autophagy inhibition by Atg7

siRNA decreased the expression of VEGFR2 in low-stressed RPE

cells (Figure 3A).

The analysis of the VEGFR2 content in exosomes showed that

there is a peak of VEGFR2-expressing exosomes when the cells

were treated with 80 mmol/L EtOH (Figure 3B, upper panel). More-

over, when the ratio VEGFR2/CD9 was studied, we observed that

the fraction of VEGFR2-positive exosomes was significantly

enhanced at 40, 80 and 200 mmol/L (Figure 3B, lower panel). When

Atg7 siRNA was applied in control and stressed cells, there were

F IGURE 2 Release of EVs is increased in low-stressed ARPE-19 cells. A, Detection of EVs by flow cytometry. Exosomes are tracked using
an antibody against CD9. B, Total number (left panel) and relative levels (right panel) of exosomes expressing Bax, Bcl-2and Atg12 in ARPE-19
cells untreated and treated with low and high EtOH concentration. C, Relative quantification of exosomes released from ARPE-19 cells (control
and stressed) after applying Atg7 siRNA. D, Relative levels of exosomes expressing p62, before and after applying Atg7 siRNA into control and
stressed ARPE-19 cell cultures. E, Relative levels of exosomes expressing Beclin-1, before and after applying Atg7 siRNA into control and
stressed ARPE-19 cell cultures. Flow cytometry dot plots available in Figures S2 and S3. Values are expressed as mean � SEM (N ≥ 3).
Significance levels: (when compared to control) P < .05 (*), P < .01 (**) and P < .001 (***); (when compared to treated with 80 mmol/L group)
P < .01 (##) and P < .001 (###)
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fewer VEGFR2-positive exosomes/mL and the percentage of exo-

somes carrying the protein was also considerably decreased (Fig-

ures 3C and S3C).

3.3 | RPE-derived exosomes and angiogenesis

Once oxidative stress—low or high—was induced, RPE cells released

a higher number of exosomes, which contained a different cargo,

from the original, healthy, RPE-derived exosomes. This new load

enclosed, among other proteins, VEGF receptors that were able to

fasten the generation of new blood vessels.19 To link OS with autop-

hagy, and their effect on the released exosomes, we silenced Atg7 in

ARPE-19 cells, which were subsequently treated, or not, with

80 mmol/L EtOH. Released vesicles were then added to HUVECs in

order to study their angiogenic capacity. Addition of exosomes

released from EtOH-treated ARPE-19 cells, where Atg7 was knocked

down, showed reduced tube formation when compared to exosomes

from ARPE-19 cells treated with control siRNA and EtOH (Fig-

ure 4A).

Sprouting angiogenesis is a fundamental mechanism in vessel

growth. It is known that low-stress conditions increased the sprouts

formation in ECs.36 After 4 hours of treatment with exosomes in

HUVEC cultures, we observed that exosomes from Atg7 siRNA-trea-

ted cells decreased the ability to form sprouts, compared to the

group treated only with low concentrations of EtOH (Figure 4B).

These findings suggest that stressed RPE derived EVs—which, as

mentioned above, carry a high population of VEGFR2-positive exo-

somes—are essential in the development of aberrant blood vessels.

3.4 | Angiogenesis of HUVEC is VEGFR2-
dependent

VEGFR-2 became activated (phosphorylated) after adding RPE-

derived exosomes to HUVECs, and its activation increased further

when the exosomes added were derived from low-stressed RPE cells

(Figure 5A).

In order to determine whether VEGF was needed for the activa-

tion of VEGFR2 upon the addition of exosomes, recombinant soluble

Flt1-Fc, commonly used to trap VEGF, was added to HUVEC cul-

tures together with RPE-derived exosomes. When RPE-derived exo-

somes, from healthy and low-stressed RPE cells were added to

HUVEC cultures, total length of the tubes increased (Figure 5B).

F IGURE 3 Autophagy inhibition reduced VEGFR2-positive fraction in EVs. A, Relative quantification of VEGFR2 expression in ARPE-19
cells (control and stressed) was studied before and after Atg7 siRNA treatment. B, Total number (upper panel) and relative levels of exosomes
expressing VEGFR2 in cultures of control and stressed (40, 80, 200 and 600 mmol/L) ARPE-19 cells. C, Total number (upper panel) and
relative levels of exosomes expressing VEGFR2 in cultures of control and stressed ARPE-19 cells, before and after applying Atg7 siRNA. Flow
cytometry dot plots available in Figure S3. Values are expressed as mean � SEM (N ≥ 3). Significance levels: (when compared to control)
P < .05 (*), P < .01 (**) and P < .001 (***); (when compared to treated with 80 mmol/L group) P < .05 (#) and P < .01 (##)
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F IGURE 4 Inhibition of autophagy in RPE reduces EV-related neovascularization in endothelial cells. A, Tube formation in HUVEC cultures
after adding exosomes from ARPE-19 cells (control and stressed) that were treated (or not) with Atg7 siRNA. Quantification of the total length
of the tubes is shown in the bar chart. B, Sprouting capacity of HUVEC after 4 hours of treatment with exosomes released from ARPE-19
cells (control and stressed), treated (or not) with Atg7 siRNA. Quantification of the total length of the sprouts is shown in the bar chart. Values
are expressed as mean � SEM (N ≥ 3). Significance levels: (when compared to control) P < .05 (*), P < .01 (**) and P < .001 (***); (when
compared to treated with 80 mmol/L group) P < .05 (#) and P < .01 (##)

ATIENZAR-AROCA ET AL. | 5251



Interestingly, when Flt1-Fc was added to the medium—arresting

VEGF—total length of the tubes did not decrease (as it would be

expected if it was VEGF-dependent; Figure 5B), indicating that the

positive angiogenic effect of exosomes is VEGF-independent.

To determine whether the increased tube formation observed is

due to the increased activated VEGFR2 observed upon the addition

of the exosomes, we inhibited VEGFR2 expression in HUVECs by

siRNA (Figure 5C). When tube formation experiments were per-

formed, results showed that ECs treated only with vehicle

responded normally to VEGF (Figure 5D, left panel). Contrarily,

those HUVEC transfected with the VEGFR2 siRNA did not respond

to exosomes (Figure 5D, right panel). Thus, VEGFR2 present in

HUVECs is required for mediating the exosomes-induced tube

formation.

F IGURE 5 Angiogenesis of HUVEC is dependent of VEGFR2. A, Blots show expression of p-VEGFR2 in HUVEC control, treated with
exosomes from healthy RPE and treated with exosomes released from stressed RPE. The bar chart represents the relative levels of VEGFR2
expression when compared to control. B, When adding the VEGF trapper sFlt1, angiogenesis goes back to control levels, but when exosomes
from stressed cells are used, sFlt1 does not arrest tube formation. C, Blots show expression of VEGFR2 in endothelial cells with or without
VEGFR2 siRNA. The bar chart represents the relative levels of VEGFR2 expression when compared to control. D, When RPE-released
exosomes were added to endothelial cells, those where VEGFR2 siRNA was applied did show a significant decrease in tube length. Values are
expressed as mean � SEM (N ≥ 3). Significance levels: P < .05 (*), P < .01 (**) and P < .001 (***)
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3.5 | Angiogenesis is enhanced by VEGFR2 from
RPE-derived exosomes

In order to investigate whether the VEGFR2 derived from the RPE

cells is responsible for inducing angiogenesis, we knocked down

VEGFR2 in control, low-stressed and high-stressed RPE cells (Fig-

ure 6A). Subsequently, exosomes were isolated and VEGFR2 levels

were quantified (Figures 6B and S6). It was observed that the frac-

tion of exosomes expressing VEGFR2 was dramatically reduced in

every case (Figure 6B). EVs were then added to HUVEC, and the

formation of new blood vessels was studied afterwards. HUVEC

treated with control RPE-derived exosomes, transfected with siRNA

control or with VEGFR2 siRNA, presented no differences in tube for-

mation (Figure 6C, left panels; quantification in Figure 6D). Low-

stressed RPE-derived exosomes were added to HUVEC cultures.

When these exosomes came from RPE cells where VEGFR-2 had

been silenced, new blood vessel growth was significantly lower than

those HUVEC nontreated with VEGFR2 siRNA (Figure 6C, centre

F IGURE 6 Angiogenesis depends on
VEGFR2 from RPE-released exosomes. A,
Blots show expression of VEGFR2 before
and after VEGFR2 siRNA was applied to
ARPE-19 cells. The bar chart represents the
relative levels of VEGFR2 expression when
compared to control. B, When VEGFR2
siRNA was applied in ARPE-19 cultures, the
set of exosomes expressing VEGFR2 was
reduced significantly in every situation. C,
HUVEC treated with exosomes from RPE
cells treated differently form tubes. D, Total
length after applying exosomes into HUVEC
cultures. When exosomes from low-
stressed RPE cells treated with VEGFR2
siRNA were added to HUVEC cultures, total
tube length was significantly reduced. Flow
cytometry dot plots available in Figure S4.
Values are expressed as mean � SEM
(N ≥ 3). Significance levels: P < .01 (**) and
P < .001 (***)
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panels; quantification in Figure 6D). High-stressed RPE-derived exo-

somes applied to HUVEC had the same influence in tube formation,

when VEGFR2 siRNA was applied and when it was not (Figure 6C,

right panels; quantification in Figure 6D). These observations thus

suggest that VEGFR2 from low-stressed RPE-derived exosomes is

necessary for inducing tube formation.

4 | DISCUSSION

Overproduction of ROS activates cellular self-defence mechanisms,

but when such production is excessively high, cell death inevitably

occurs. It has been repeatedly observed that EtOH exerts an oxida-

tive effect in several tissues, including the RPE.2,3,37 Furthermore,

moderate levels of EtOH have been observed to enhance angiogene-

sis by promoting VEGF release.38

Enhanced autophagy flux in RPE cells contributes to proper RPE

function.39 This exceptionally high physiological autophagic activity

in RPE cells is mainly due to POS phagocytosis.40 Autophagic activity

in RPE cells increases after ROS damage induced by EtOH, encour-

aging formation of more autophagosomes and subsequent autolyso-

somes. This effect was observed in RPE cells of aged mice and AMD

patients.22 It was also observed that OS in ARPE-19 cells does not

kill them, but rather enhances autophagy,2 VEGF release41 and exo-

some liberation.19 In this sense, RPE cells have been reported to

express p62 in conditions of autophagy impairment in a collagen

XVIII-deficient mouse model.42

Several studies have described the link between autophagy and

exosome biogenesis in disease. Bhattacharya described how both

mechanisms work together in pancreatic tumour cells.43 Wang

described how autophagy and RPE exosomes work together in the

formation of drusen in AMD.22 We have altered autophagy in ARPE-

19 cells by silencing the gene that encodes for Atg7. Atg7 mediates

the conjugation of other proteins during autophagy, such as Atg3

and Atg8, which has a number of orthologues in mammals, including

LC3.44 Thus, after silencing Atg7 with a specific siRNA, the

autophagosome cannot be formed. In such an experiment one might

expect a higher number of MVBs ready to fuse with the cell mem-

brane and liberate their content, thus releasing exosomes. However,

we observed that the number of exosomes was reduced. Thus, it is

possible that MVBs were degraded by lysosomes via an independent

autophagosome pathway.23

It has been previously established that EVs, particularly exosomes,

play a central role in the proliferation, migration and tube formation of

endothelial cells in different biological systems—in both physiological

and pathological scenarios—by either increasing45,46 or reducing47

angiogenesis. Furthermore, RPE cells seem to release specific exo-

somes through the basolateral membrane towards the choroidal

ECs.48,49 These exosomes. An earlier study showed that stressed RPE

cells released numerous exosomes expressing VEGFR2 which, when

exposed to endothelial cells, hasten their growth.19 Since autophagy

influences exosome formation, its reduction in stressful conditions

might also reduce angiogenesis, as observed in Figure 3. It is well

established that VEGFR2 mediates migration of endothelial cells dur-

ing angiogenesis,50 which can be activated by heat shock protein 20

(Hsp20).51 Even though physiological development and maintenance

of the choriocapillaris requires RPE-derived VEGF,52,53 our observa-

tions showed that endothelial cells were still forming tubes when

VEGF-A and -B were blocked using a trapper, thus pointing that the

pathological mechanism might occur in a VEGF-independent manner.

New blood vessels formed during AMD or DR, like tumour vessels, are

abnormal, and it has previously postulated that their growth might

occur via alternative VEGF-A pathways.54

Apparently, as aforementioned, stress-induced abnormal angio-

genesis can occur independent of VEGF-A, and the pathway is not

clear yet. What is clear is that VEGFR2 is activated during abnormal

angiogenesis and that RPE-released exosomes are contributing with

their own cargo of receptors. When VEGFR2 was inhibited in

HUVEC—by means of a VEGFR2 siRNA—tube formation was

arrested. When VEGFR2 expression was inhibited in RPE cells and

the released exosomes were added to HUVEC cultures in a consis-

tent manner, we observed that tube formation was significantly

reduced. These last outcomes point that, even when endogenous

endothelial VEGFR2 is critical for the growing of abnormal blood

vessels, external input from RPE-derived exosomes might be decisive

for the distinctive angiogenesis observed in neovascular eye dis-

eases, such as AMD and DR, and that this exosome release is

directly related to autophagy.
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