176 research outputs found
On a Reef Far, Far Away: Anthropogenic Impacts Following Extreme Storms Affect Sponge Health and Bacterial Communities
Terrestrial runoff can negatively impact marine ecosystems through stressors including excess nutrients, freshwater, sediments, and contaminants. Severe storms, which are increasing with global climate change, generate massive inputs of runoff over short timescales (hours to days); such runoff impacted offshore reefs in the northwest Gulf of Mexico (NW GoM) following severe storms in 2016 and 2017. Several weeks after coastal flooding from these events, NW GoM reef corals, sponges, and other benthic invertebrates ∼185 km offshore experienced mortality (2016 only) and/or sub-lethal stress (both years). To assess the impact of storm-derived runoff on reef filter feeders, we characterized the bacterial communities of two sponges, Agelas clathrodes and Xestospongia muta, from offshore reefs during periods of sub-lethal stress and no stress over a three-year period (2016—2018). Sponge-associated and seawater-associated bacterial communities were altered during both flood years. Additionally, we found evidence of wastewater contamination (based on 16S rRNA gene libraries and quantitative PCR) in offshore sponge samples, but not in seawater samples, following these flood years. Signs of wastewater contamination were absent during the no-flood year. We show that flood events from severe storms have the capacity to reach offshore reef ecosystems and impact resident benthic organisms. Such impacts are most readily detected if baseline data on organismal physiology and associated microbiome composition are available. This highlights the need for molecular and microbial time series of benthic organisms in near- and offshore reef ecosystems, and the continued mitigation of stormwater runoff and climate change impacts
Cluster K Mycobacteriophages: Insights into the Evolutionary Origins of Mycobacteriophage TM4
Five newly isolated mycobacteriophages –Angelica, CrimD, Adephagia, Anaya, and Pixie – have similar genomic architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics. The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2, and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of them – with the exception of TM4 – form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis; immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype. We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and related species
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV
Middle East respiratory syndrome coronavirus (MERS-CoV) is the causative agent of a
severe respiratory disease associated with more than 2468 human infections and over 851
deaths in 27 countries since 2012. There are no approved treatments for MERS-CoV infection
although a combination of lopinavir, ritonavir and interferon beta (LPV/RTV-IFNb) is currently
being evaluated in humans in the Kingdom of Saudi Arabia. Here, we show that
remdesivir (RDV) and IFNb have superior antiviral activity to LPV and RTV in vitro. In mice,
both prophylactic and therapeutic RDV improve pulmonary function and reduce lung viral
loads and severe lung pathology. In contrast, prophylactic LPV/RTV-IFNb slightly reduces
viral loads without impacting other disease parameters. Therapeutic LPV/RTV-IFNb
improves pulmonary function but does not reduce virus replication or severe lung pathology.
Thus, we provide in vivo evidence of the potential for RDV to treat MERS-CoV infections
Perspectives of nurses' role in interprofessional pharmaceutical care across 14 European countries: A qualitative study in pharmacists, physicians and nurses.
OBJECTIVES: To understand healthcare professionals' experiences and perceptions of nurses' potential or ideal roles in pharmaceutical care (PC). DESIGN: Qualitative study conducted through semi-structured in-depth interviews. SETTING: Between December 2018 and October 2019, interviews were conducted with healthcare professionals of 14 European countries in four healthcare settings: hospitals, community care, mental health and long-term residential care. PARTICIPANTS: In each country, pharmacists, physicians and nurses in each of the four settings were interviewed. Participants were selected on the basis that they were key informants with broad knowledge and experience of PC. DATA COLLECTION AND ANALYSIS: All interviews were conducted face to face. Each country conducted an initial thematic analysis. Consensus was reached through a face-to-face discussion of all 14 national leads. RESULTS: 340 interviews were completed. Several tasks were described within four potential nursing responsibilities, that came up as the analysis themes, being: 1) monitoring therapeutic/adverse effects of medicines, 2) monitoring medicines adherence, 3) decision making on medicines, including prescribing 4) providing patient education/information. Nurses' autonomy varied across Europe, from none to limited to a few tasks and emergencies to a broad range of tasks and responsibilities. Intended level of autonomy depended on medicine types and level of education. Some changes are needed before nursing roles can be optimised and implemented in practice. Lack of time, shortage of nurses, absence of legal frameworks and limited education and knowledge are main threats to European nurses actualising their ideal role in PC. CONCLUSIONS: European nurses have an active role in PC. Respondents reported positive impacts on care quality and patient outcomes when nurses assumed PC responsibilities. Healthcare professionals expect nurses to report observations and assessments. This key patient information should be shared and addressed by the interprofessional team. The study evidences the need of a unique and consensus-based PC framework across Europe
Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries
Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management
Improved Constraints on the 21 cm EoR Power Spectrum and the X-Ray Heating of the IGM with HERA Phase I Observations
We report the most sensitive upper limits to date on the 21 cm epoch of
reionization power spectrum using 94 nights of observing with Phase I of the
Hydrogen Epoch of Reionization Array (HERA). Using similar analysis techniques
as in previously reported limits (HERA Collaboration 2022a), we find at 95%
confidence that Mpc) mK at and that Mpc mK at , an improvement by a factor of 2.1 and 2.6 respectively. These limits are
mostly consistent with thermal noise over a wide range of after our data
quality cuts, despite performing a relatively conservative analysis designed to
minimize signal loss. Our results are validated with both statistical tests on
the data and end-to-end pipeline simulations. We also report updated
constraints on the astrophysics of reionization and the cosmic dawn. Using
multiple independent modeling and inference techniques previously employed by
HERA Collaboration (2022b), we find that the intergalactic medium must have
been heated above the adiabatic cooling limit at least as early as ,
ruling out a broad set of so-called "cold reionization" scenarios. If this
heating is due to high-mass X-ray binaries during the cosmic dawn, as is
generally believed, our result's 99% credible interval excludes the local
relationship between soft X-ray luminosity and star formation and thus requires
heating driven by evolved low-metallicity stars.Comment: 57 pages, 37 figures. Updated to match the accepted ApJ version.
Corresponding author: Joshua S. Dillo
Factors influencing engineering students’ decisions to cheat by type of assessment
Academic dishonesty (cheating) has been prevalent on college campuses for decades, and the percentage of students reporting cheating varies by college major. This study, based on a survey of 643 undergraduate engineering majors at 11 institutions, used two parallel hierarchical multiple regression analyses to predict the frequency of cheating on exams and the frequency of cheating on homework based on eight blocks of independent variables: demographics, pre-college cheating behavior, co-curricular participation, plus five blocks organized around Ajzen’s Theory of Planned Behavior (moral obligation not to cheat, attitudes about cheating, evaluation of the costs and benefits of cheating, perceived social pressures to cheat or not to cheat, and perceived effectiveness of academic dishonesty policies). The final models significantly predict 36% of the variance in “frequency of cheating on exams” and 14% of the variance in “frequency of cheating on homework”. Students don’t see cheating as a single construct and their decisions to cheat or not to cheat are influenced differently depending on the type of assessment. Secondary findings are that a student’s conviction that cheating is wrong no matter what the circumstances is a strong deterrent to cheating across types of assessment and that a student who agrees that he/she would cheat in order to alleviate stressful situations is more likely to cheat on both exams and homework.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42694/1/11162_2006_Article_9010.pd
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …