610 research outputs found

    Urinary eicosanoid metabolites in HIV-infected women with central obesity switching to raltegravir: an analysis from the women, integrase, and fat accumulation trial.

    Get PDF
    Chronic inflammation is a hallmark of HIV infection. Eicosanoids reflect inflammation, oxidant stress, and vascular health and vary by sex and metabolic parameters. Raltegravir (RAL) is an HIV-1 integrase inhibitor that may have limited metabolic effects. We assessed urinary F2-isoprostanes (F2-IsoPs), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB2) in HIV-infected women switching to RAL-containing antiretroviral therapy (ART). Thirty-seven women (RAL = 17; PI/NNRTI = 20) with a median age of 43 years and BMI 32 kg/m(2) completed week 24. TxB2 increased in the RAL versus PI/NNRTI arm (+0.09 versus -0.02; P = 0.06). Baseline PGI-M was lower in the RAL arm (P = 0.005); no other between-arm cross-sectional differences were observed. In the PI/NNRTI arm, 24-week visceral adipose tissue change correlated with PGI-M (rho = 0.45; P = 0.04) and TxB2 (rho = 0.44; P = 0.005) changes, with a trend seen for PGE-M (rho = 0.41; P = 0.07). In an adjusted model, age ≥ 50 years (N = 8) was associated with increased PGE-M (P = 0.04). In this randomized trial, a switch to RAL did not significantly affect urinary eicosanoids over 24 weeks. In women continuing PI/NNRTI, increased visceral adipose tissue correlated with increased PGI-M and PGE-M. Older age (≥ 50) was associated with increased PGE-M. Relationships between aging, adiposity, ART, and eicosanoids during HIV-infection require further study

    Examination of oral cancer biomarkers by tissue microarray analysis.

    Get PDF
    OBJECTIVE: To validate the DNA microarray results on a subset of genes that could potentially serve as biomarkers of oral squamous cell carcinoma (OSCC) by examining their expression with an alternate quantitative method and by assessing their protein levels. DESIGN: Based on DNA microarray data from our laboratory and data reported in the literature, we identified 6 potential biomarkers of OSCC to investigate further. We used quantitative real-time polymerase chain reaction to examine expression changes of CDH11, MMP3, SPARC, POSTN, TNC, and TGM3 in OSCC and histologically normal control tissues. We further examined validated markers at the protein level by immunohistochemical analysis of OSCC tissue microarray sections. RESULTS: Quantitative real-time polymerase chain reaction analysis revealed upregulation of CDH11, SPARC, POSTN, and TNC gene expression and decreased TGM3 expression in OSCC tissue compared with control tissue; MMP3 was not found to be differentially expressed. In tissue microarray immunohistochemical analyses, SPARC (secreted protein, acidic, rich in cysteine), periostin, and tenascin C exhibited increased protein expression in tumor tissue compared with control tissue, and their expression was primarily localized within tumor-associated stroma rather than tumor epithelium. Conversely, transglutaminase 3 protein expression was found only within keratinocytes in control tissue and was significantly downregulated in cancer cells. CONCLUSIONS: Of 6 potential gene markers of OSCC, initially identified by DNA microarray analyses, differential expression of CDH11, SPARC, POSTN, TNC, and TGM3 were validated by quantitative real-time polymerase chain reaction. Differential expression and localization of proteins encoded by SPARC, POSTN, TNC, and TGM3 were clearly shown by tissue microarray immunohistochemical analysis

    Hypermethylation of CCND2 May Reflect a Smoking-Induced Precancerous Change in the Lung

    Get PDF
    It remains unknown whether tobacco smoke induces DNA hypermethylation as an early event in carcinogenesis or as a late event, specific to overt cancer tissue. Using MethyLight assays, we analyzed 316 lung tissue samples from 151 cancer-free subjects (121 ever-smokers and 30 never-smokers) for hypermethylation of 19 genes previously observed to be hypermethylated in nonsmall cell lung cancers. Only APC (39%), CCND2 (21%), CDH1 (7%), and RARB (4%) were hypermethylated in >2% of these cancer-free subjects. CCND2 was hypermethylated more frequently in ever-smokers (26%) than in never-smokers (3%). CCND2 hypermethylation was also associated with increased age and upper lobe sample location. APC was frequently hypermethylated in both ever-smokers (41%) and never-smokers (30%). BVES, CDH13, CDKN2A (p16), CDKN2B, DAPK1, IGFBP3, IGSF4, KCNH5, KCNH8, MGMT, OPCML, PCSK6, RASSF1, RUNX, and TMS1 were rarely hypermethylated (<2%) in all subjects. Hypermethylation of CCND2 may reflect a smoking-induced precancerous change in the lung

    Urinary Eicosanoid Metabolites in HIV-Infected Women with Central Obesity Switching to Raltegravir: An Analysis from the Women, Integrase, and Fat Accumulation Trial

    Get PDF
    Chronic inflammation is a hallmark of HIV infection. Eicosanoids reflect inflammation, oxidant stress, and vascular health and vary by sex and metabolic parameters. Raltegravir (RAL) is an HIV-1 integrase inhibitor that may have limited metabolic effects. We assessed urinary F2-isoprostanes (F2-IsoPs), prostaglandin E2 (PGE-M), prostacyclin (PGI-M), and thromboxane B2 (TxB2) in HIV-infected women switching to RAL-containing antiretroviral therapy (ART). Thirty-seven women (RAL = 17; PI/NNRTI = 20) with a median age of 43 years and BMI 32 kg/m2 completed week 24. TxB2 increased in the RAL versus PI/NNRTI arm (+0.09 versus −0.02; P=0.06). Baseline PGI-M was lower in the RAL arm (P=0.005); no other between-arm cross-sectional differences were observed. In the PI/NNRTI arm, 24-week visceral adipose tissue change correlated with PGI-M (rho=0.45; P=0.04) and TxB2 (rho=0.44; P=0.005) changes, with a trend seen for PGE-M (rho=0.41; P=0.07). In an adjusted model, age ≥ 50 years (N=8) was associated with increased PGE-M (P=0.04). In this randomized trial, a switch to RAL did not significantly affect urinary eicosanoids over 24 weeks. In women continuing PI/NNRTI, increased visceral adipose tissue correlated with increased PGI-M and PGE-M. Older age (≥50) was associated with increased PGE-M. Relationships between aging, adiposity, ART, and eicosanoids during HIV-infection require further study

    The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ

    Get PDF
    Granulomas are the hallmark of mycobacterial disease. Here, we demonstrate that both the cell recruitment and the increased glucose consumption in granulomatous infiltrates during Mycobacterium avium infection are highly dependent on interferon-y (IFN-y). Mycobacterium avium-infected mice lacking IFN-y signalling failed to developed significant inflammatory infiltrations and lacked the characteristic uptake of the glucose analogue fluorine-18-fluorodeoxyglucose (FDG). To assess the role of macrophages in glucose uptake we infected mice with a selective impairment of IFN-y signalling in the macrophage lineage (MIIG mice). Although only a partial reduction of the granulomatous areas was observed in infected MIIG mice, the insensitivity of macrophages to IFN-y reduced the accumulation of FDG. In vivo, ex vivo and in vitro assays showed that macrophage activated by IFN-y displayed increased rates of glucose uptake and in vitro studies showed also that they had increased lactate production and increased expression of key glycolytic enzymes. Overall, our results show that the activation of macrophages by IFN-y is responsible for the Warburg effect observed in organs infected with M. avium.Funded by project ‘NORTE-07-0124-FEDER-000002-Host-Pathogen Interactions’ co-funded by Programa Operacional Regional do Norte (ON.2—O Novo Norte), under the Quadro de Referência Estratégico Nacional (QREN), through the Fundo Europeu de Desenvolvimento Regional (FEDER) and by Fundação para a Ciência e Tecnologia

    A systematic analysis of the human immune response to Plasmodium vivax

    Get PDF
    Background. The biology of Plasmodium vivax is markedly different from that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we inoculated human volunteers with a clonal field isolate of P. vivax and tracked their response through infection and convalescence. Methods. Participants were injected intravenously with blood-stage parasites and infection dynamics were tracked in real time by quantitative PCR. Whole blood samples were used for high dimensional protein analysis, RNA sequencing, and cytometry by time of flight, and temporal changes in the host response to P. vivax were quantified by linear regression. Comparative analyses with P. falciparum were then undertaken using analogous data sets derived from prior controlled human malaria infection studies. Results. P. vivax rapidly induced a type I inflammatory response that coincided with hallmark features of clinical malaria. This acute-phase response shared remarkable overlap with that induced by P. falciparum but was significantly elevated (at RNA and protein levels), leading to an increased incidence of pyrexia. In contrast, T cell activation and terminal differentiation were significantly increased in volunteers infected with P. falciparum. Heterogeneous CD4+ T cells were found to dominate this adaptive response and phenotypic analysis revealed unexpected features normally associated with cytotoxicity and autoinflammatory disease. Conclusion. P. vivax triggers increased systemic interferon signaling (cf P. falciparum), which likely explains its reduced pyrogenic threshold. In contrast, P. falciparum drives T cell activation far in excess of P. vivax, which may partially explain why falciparum malaria more frequently causes severe disease. Trial registration. ClinicalTrials.gov NCT03797989. Funding. The European Union’s Horizon 2020 Research and Innovation programme, the Wellcome Trust, and the Royal Society

    The Baryon Oscillation Spectroscopic Survey of SDSS-III

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large scale structure. BOSS uses 1.5 million luminous galaxies as faint as i=19.9 over 10,000 square degrees to measure BAO to redshifts z<0.7. Observations of neutral hydrogen in the Lyman alpha forest in more than 150,000 quasar spectra (g<22) will constrain BAO over the redshift range 2.15<z<3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Lyman alpha forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance D_A to an accuracy of 1.0% at redshifts z=0.3 and z=0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyman alpha forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D_A(z) and H^{-1}(z) parameters to an accuracy of 1.9% at z~2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.Comment: 49 pages, 16 figures, accepted by A
    corecore