68 research outputs found

    The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology

    Get PDF
    available in PMC 2011 December 14.Huntington’s Disease is an adult-onset dominant heritable disorder characterized by progressive psychiatric disruption, cognitive deficits, and loss of motor coordination. It is caused by expansion of a polyglutamine tract within the N-terminal domain of the Huntingtin protein. The mutation confers a toxic gain-of-function phenotype, resulting in neurodegeneration that is most severe in the striatum. Increasing experimental evidence from genetic model systems such as mice, zebrafish, and Drosophila suggest that polyglutamine expansion within the Huntingtin protein also disrupts its normal biological function. Huntingtin is widely expressed during development and has a complex and dynamic distribution within cells. It is predicted to be a protein of pleiotropic function, interacting with a large number of effector proteins to mediate a host of physiological processes. In this review, we highlight the wildtype function of Huntingtin, focusing on its postdevelopmental roles in axonal trafficking, regulation of gene transcription, and cell survival. We then discuss how potential loss-of-function phenotypes resulting in polyglutamine expansion within Huntingtin may have direct relevance to the underlying pathophysiology of Huntington’s Disease.National Institutes of Health (U.S.) (NIH Grant NS052203

    Gliotactin, a novel marker of tricellular junctions, is necessary for septate junction development in Drosophila

    Get PDF
    Septate junctions (SJs), similar to tight junctions, function as transepithelial permeability barriers. Gliotactin (Gli) is a cholinesterase-like molecule that is necessary for blood–nerve barrier integrity, and may, therefore, contribute to SJ development or function. To address this hypothesis, we analyzed Gli expression and the Gli mutant phenotype in Drosophila epithelia. In Gli mutants, localization of SJ markers neurexin-IV, discs large, and coracle are disrupted. Furthermore, SJ barrier function is lost as determined by dye permeability assays. These data suggest that Gli is necessary for SJ formation. Surprisingly, Gli distribution only colocalizes with other SJ markers at tricellular junctions, suggesting that Gli has a unique function in SJ development. Ultrastructural analysis of Gli mutants supports this notion. In contrast to other SJ mutants in which septa are missing, septa are present in Gli mutants, but the junction has an immature morphology. We propose a model, whereby Gli acts at tricellular junctions to bind, anchor, or compact SJ strands apically during SJ development

    Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control

    Get PDF
    Epithelial tubes of the correct size and shape are vital for the function of the lungs, kidneys, and vascular system, yet little is known about epithelial tube size regulation. Mutations in the Drosophila gene sinuous have previously been shown to cause tracheal tubes to be elongated and have diameter increases. Our genetic analysis using a sinuous null mutation suggests that sinuous functions in the same pathway as the septate junction genes neurexin and scribble, but that nervana 2, convoluted, varicose, and cystic have functions not shared by sinuous. Our molecular analyses reveal that sinuous encodes a claudin that localizes to septate junctions and is required for septate junction organization and paracellular barrier function. These results provide important evidence that the paracellular barriers formed by arthropod septate junctions and vertebrate tight junctions have a common molecular basis despite their otherwise different molecular compositions, morphologies, and subcellular localizations

    Reverse-engineering the anti-MUC1 antibody 139H2 by mass spectrometry–based de novo sequencing

    Get PDF
    Mucin 1 (MUC1) is a transmembrane mucin expressed at the apical surface of epithelial cells at mucosal surfaces. MUC1 has a barrier function against bacterial invasion and is well known for its aberrant expression and glycosylation in adenocarcinomas. The MUC1 extracellular domain contains a variable number of tandem repeats (VNTR) of 20 amino acids, which are heavily O-linked glycosylated. Monoclonal antibodies against the MUC1 VNTR are powerful research tools with applications in the diagnosis and treatment of MUC1-expressing cancers. Here, we report direct mass spectrometry–based sequencing of anti-MUC1 hybridoma-derived 139H2 IgG, enabling reverse-engineering of the functional recombinant monoclonal antibody. The crystal structure of the 139H2 Fab fragment in complex with the MUC1 epitope was solved, revealing the molecular basis of 139H2 binding specificity to MUC1 and its tolerance to O-glycosylation of the VNTR. The available sequence of 139H2 will allow further development of MUC1-related diagnostic, targeting, and treatment strategies

    Reverse engineering the anti-MUC1 hybridoma antibody 139H2 by mass spectrometry-based de novo sequencing

    Get PDF
    Mucin 1 (MUC1) is a transmembrane mucin expressed at the apical surface of epithelial cells at different mucosal surfaces including breast and intestine. In the gastrointestinal tract, MUC1 has a barrier function against bacterial invasion, but can also serve as an entry receptor for pathogenic Salmonella bacteria. Moreover, MUC1 is well known for its aberrant expression and glycosylation in adenocarcinomas The MUC1 extracellular domain contains a variable number of tandem repeats (VNTR) of 20 amino acids, which are heavily O-linked glycosylated.. Monoclonal antibodies against the MUC1 VNTR can be powerful tools because of their multiplicity of binding and possible applications in the diagnosis and treatment of MUC1-expressing cancers. One such antibody is the hybridoma mouse monoclonal 139H2, which is also widely used as a research tool to study non-cancer MUC1. Here we report direct mass spectrometry-based sequencing of hybridoma-derived 139H2 IgG, which enabled reverse engineering of a recombinant 139H2. The performance of the reverse engineered 139H2 IgG and its Fab fragment were validated by comparison to the hybridoma-derived product in Western blot and immunofluorescence microscopy. The reverse engineering of 139H2 allowed us to characterize binding to the VNTR peptide epitope by surface plasmon resonance (SPR) and solve the crystal structure of the 139H2 Fab fragment in complex with the MUC1 VNTR peptide. These analyses reveal the molecular basis for 139H2 binding specificity to MUC1 and its tolerance to O-glycosylation of the VNTR. The available sequence of 139H2 will allow further development of MUC1-related diagnostics, targeting and treatment strategies

    An element through the looking glass: Exploring the Au-C, Au-H and Au-O energy landscape

    Get PDF
    Gold, the archetypal “noble metal”, used to be considered of little interest in catalysis. It is now clear that this was a misconception, and a multitude of gold-catalysed transformations has been reported. However, one consequence of the long-held view of gold as inert metal is that its organometallic chemistry contains many “unknowns”, and catalytic cycles devised to explain gold's reactivity draw largely on analogies with other transition metals. How realistic are such mechanistic assumptions? In the last few years a number of key compound classes have been discovered that can provide some answers. This Perspective attempts to summarise these developments, with particular emphasis on recently discovered gold(III) complexes with bonds to hydrogen, oxygen, alkenes and CO ligands

    Direct Mass Spectrometry-Based Detection and Antibody Sequencing of Monoclonal Gammopathy of Undetermined Significance from Patient Serum: A Case Study

    Get PDF
    Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell disorder characterized by the presence of a predominant monoclonal antibody (i.e., M-protein) in serum, without clinical symptoms. Here we present a case study in which we detect MGUS by liquid-chromatography coupled with mass spectrometry (LC-MS) profiling of IgG1 in human serum. We detected a Fab-glycosylated M-protein and determined the full heavy and light chain sequences by bottom-up proteomics techniques using multiple proteases, further validated by top-down LC-MS. Moreover, the composition and location of the Fab-glycan could be determined in CDR1 of the heavy chain. The outlined approach adds to an expanding mass spectrometry-based toolkit to characterize monoclonal gammopathies such as MGUS and multiple myeloma, with fine molecular detail. The ability to detect monoclonal gammopathies and determine M-protein sequences straight from blood samples by mass spectrometry provides new opportunities to understand the molecular mechanisms of such diseases

    Direct Mass Spectrometry-Based Detection and Antibody Sequencing of Monoclonal Gammopathy of Undetermined Significance from Patient Serum: A Case Study

    Get PDF
    Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell disorder characterized by the presence of a predominant monoclonal antibody (i.e., M-protein) in serum, without clinical symptoms. Here we present a case study in which we detect MGUS by liquid-chromatography coupled with mass spectrometry (LC-MS) profiling of IgG1 in human serum. We detected a Fab-glycosylated M-protein and determined the full heavy and light chain sequences by bottom-up proteomics techniques using multiple proteases, further validated by top-down LC-MS. Moreover, the composition and location of the Fab-glycan could be determined in CDR1 of the heavy chain. The outlined approach adds to an expanding mass spectrometry-based toolkit to characterize monoclonal gammopathies such as MGUS and multiple myeloma, with fine molecular detail. The ability to detect monoclonal gammopathies and determine M-protein sequences straight from blood samples by mass spectrometry provides new opportunities to understand the molecular mechanisms of such diseases

    Automatic Robust Neurite Detection and Morphological Analysis of Neuronal Cell Cultures in High-content Screening

    Get PDF
    Cell-based high content screening (HCS) is becoming an important and increasingly favored approach in therapeutic drug discovery and functional genomics. In HCS, changes in cellular morphology and biomarker distributions provide an information-rich profile of cellular responses to experimental treatments such as small molecules or gene knockdown probes. One obstacle that currently exists with such cell-based assays is the availability of image processing algorithms that are capable of reliably and automatically analyzing large HCS image sets. HCS images of primary neuronal cell cultures are particularly challenging to analyze due to complex cellular morphology. Here we present a robust method for quantifying and statistically analyzing the morphology of neuronal cells in HCS images. The major advantages of our method over existing software lie in its capability to correct non-uniform illumination using the contrast-limited adaptive histogram equalization method; segment neuromeres using Gabor-wavelet texture analysis; and detect faint neurites by a novel phase-based neurite extraction algorithm that is invariant to changes in illumination and contrast and can accurately localize neurites. Our method was successfully applied to analyze a large HCS image set generated in a morphology screen for polyglutaminemediated neuronal toxicity using primary neuronal cell cultures derived from embryos of a Drosophila Huntington’s Disease (HD) model.National Institutes of Health (U.S.) (Grant

    High-Content Chemical and RNAi Screens for Suppressors of Neurotoxicity in a Huntington's Disease Model

    Get PDF
    To identify Huntington's Disease therapeutics, we conducted high-content small molecule and RNAi suppressor screens using a Drosophila primary neural culture Huntingtin model. Drosophila primary neurons offer a sensitive readout for neurotoxicty, as their neurites develop dysmorphic features in the presence of mutant polyglutamine-expanded Huntingtin compared to nonpathogenic Huntingtin. By tracking the subcellular distribution of mRFP-tagged pathogenic Huntingtin and assaying neurite branch morphology via live-imaging, we identified suppressors that could reduce Huntingtin aggregation and/or prevent the formation of dystrophic neurites. The custom algorithms we used to quantify neurite morphologies in complex cultures provide a useful tool for future high-content screening approaches focused on neurodegenerative disease models. Compounds previously found to be effective aggregation inhibitors in mammalian systems were also effective in Drosophila primary cultures, suggesting translational capacity between these models. However, we did not observe a direct correlation between the ability of a compound or gene knockdown to suppress aggregate formation and its ability to rescue dysmorphic neurites. Only a subset of aggregation inhibitors could revert dysmorphic cellular profiles. We identified lkb1, an upstream kinase in the mTOR/Insulin pathway, and four novel drugs, Camptothecin, OH-Camptothecin, 18β-Glycyrrhetinic acid, and Carbenoxolone, that were strong suppressors of mutant Huntingtin-induced neurotoxicity. Huntingtin neurotoxicity suppressors identified through our screen also restored viability in an in vivo Drosophila Huntington's Disease model, making them attractive candidates for further therapeutic evaluation.National Institutes of Health (U.S.) (grant R01 EB007042)National Institutes of Health (U.S.
    • …
    corecore