16 research outputs found

    CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND

    Full text link
    The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLAND's 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Delta_m^2 > 0.1 eV^2 and sin^2(2theta) > 0.05.Comment: 67 pages, 50 figures. Th. Lasserre thanks the European Research Council for support under the Starting Grant StG-30718

    Development of dynamic models for neutron transport calculations

    Get PDF
    A quasi-static approach within the framework of neutron transport theory is used to develop a computational tool for the time-dependent analysis of nuclear systems. The determination of the shape function needed for the quasistatic scheme is obtained by the steady-state transport code DRAGON. The kinetic model solves the system of ordinary differential equations for the amplitude function on a fast scale. The kinetic parameters are calculated by a coupling module that retrieves the shape from the output of the transport code and performs the required adjoint-weighted quadratures. When the update of the shape has to be carried out, the coupling module generates an appropriate input file for the transport code. Both the standard Improved Quasi-Static scheme and an innovative Predictor-Corrector algorithm are implemented. The results show the feasibility of both procedures and their effectiveness in terms of computational times and accuracy

    The SOX experiment: understanding the detector behavior using calibration sources

    Get PDF
    The SOX experiment investigates the existence of light sterile neutrinos. A solid signal would mean the discovery of the first particles beyond the Standard Electroweak Model and would have profound implications in our understanding of the Universe and of fundamental particle physics. In case of a negative result, it is able to close a long standing debate about the reality of the neutrino anomalies. The SOX experiment will use a 144Ce144Pr^{144}Ce-^{144}Pr antineutrino generator placed 8.5~m below the Borexino liquid scintillator detector. In view of the SOX experiment, a precise knowledge of the energy response and the spatial reconstruction of the antineutrino events is very important. Consequently, a calibration campaign of the Borexino detector is foreseen before the beginning of the SOX data taking. This paper briefly reviews the techniques used for calibrate the Borexino detector

    Sphere of confusion of a goniometer: measurements, techniques and results

    No full text
    International audienceIn the diffraction community, the goniometer is the main part of the diffractometer, essential for orienting the samples. To characterize the goniometer, the sphere of confusion (SoC) has been measured. The SoC describes the minimal sphere that enclosed the measurements. This essential information is very important for the diffractometer users. In collaboration with Symetrie Inc., Soleil Synchrotron and the CEA, the SoC has been measured with three different metrology methods. These three measurement techniques and the associated results are discussed in this article

    Radioactive source experiments in Borexino

    No full text
    Most of the neutrino oscillation results can be explained by the three-neutrino paradigm. However several anomalies in short baseline oscillation data (L/E of about 1 m/MeV) could be interpreted by invoking a light sterile neutrino. This new state would be separated from the standard neutrinos by a squared mass difference \u394m2new 3c 0.1-1 eV2 and would have mixing angles of sin2 2\u3b8ee 73 0.01 in the electron disappearance channel. This new neutrino, often called sterile, would not feel standard model interactions but mix with the others. We present the CeSOX and CrSOX projects to constrain the existence of eV-scale sterile neutrinos by deploying an intense radioactive \u3b2-source next to the Borexino detector
    corecore