2,449 research outputs found

    Masculinity in Pulitzer Prize-winning plays, 1982--2002: A content analysis study.

    Get PDF
    This study examines masculinity in Pulitzer Prize-Winning Plays from 1982--2002. Masculinity has been under intense scrutiny and criticism in the media in the past twenty years and male images have changed during this period of time. Traditional male roles have been criticized and new male ideals have been presented to counter these images from the past. This research project seeks to examine how Pulitzer Prize winners in Drama have presented leading male roles from 1982--2002. Particular elements under consideration are: age, race, economic status, marital status, and other areas. The primary area of analysis is through masculine archetypes---King, Warrior, Magician, and Lover. Through these archetypes, concepts of masculinity are studied and conclusions drawn to determine how men have been presented in these Pulitzer Prize-winning plays

    A vision of leadership for secondary school : a reflective essay

    Get PDF
    Leadership requires a vision. A clear picture of what you want to accomplish. It\u27s teaching those around you how they can better themselves as well as the people they are working with. It\u27s developing, organizing, and monitoring a plan so the vision can be carried out. It\u27s knowing that you cannot reach the vision alone and drawing from the people around you. Using all the resources your school and community have to offer. Leadership is modeling desired behaviors and showing others you care. Leadership is making tough decisions , and leading change when needed. Leadership is not what you think, but it is what you do

    Particle transport and heating in the microturbulent precursor of relativistic shocks

    Full text link
    Collisionless relativistic shocks have been the focus of intense theoretical and numerical investigations in recent years. The acceleration of particles, the generation of electromagnetic microturbulence and the building up of a shock front are three interrelated essential ingredients of a relativistic collisionless shock wave. In this paper we investigate two issues of importance in this context: (1) the transport of suprathermal particles in the excited microturbulence upstream of the shock and its consequences regarding particle acceleration; (2) the preheating of incoming background electrons as they cross the shock precursor and experience relativistic oscillations in the microturbulent electric fields. We place emphasis on the importance of the motion of the electromagnetic disturbances relatively to the background plasma and to the shock front. This investigation is carried out for the two major instabilities involved in the precursor of relativistic shocks, the filamentation instability and the oblique two stream instability. Finally, we use our results to discuss the maximal acceleration at the external shock of a gamma-ray burst; we find in particular a maximal synchrotron photon energy of the order of a few GeV.Comment: 14 pages, 6 figures. Revised versio

    Nucleosome repositioning via loop formation

    Get PDF
    Active (catalysed) and passive (intrinsic) nucleosome repositioning is known to be a crucial event during the transcriptional activation of certain eucaryotic genes. Here we consider theoretically the intrinsic mechanism and study in detail the energetics and dynamics of DNA-loop-mediated nucleosome repositioning, as previously proposed by Schiessel et al. (H. Schiessel, J. Widom, R. F. Bruinsma, and W. M. Gelbart. 2001. {\it Phys. Rev. Lett.} 86:4414-4417). The surprising outcome of the present study is the inherent nonlocality of nucleosome motion within this model -- being a direct physical consequence of the loop mechanism. On long enough DNA templates the longer jumps dominate over the previously predicted local motion, a fact that contrasts simple diffusive mechanisms considered before. The possible experimental outcome resulting from the considered mechanism is predicted, discussed and compared to existing experimental findings

    Laser-Induced Electron Emission from Au Nanowires: A Probe for Orthogonal Polarizations

    Get PDF
    Photoelectron field emission, induced by femtosecond laser pulses focused on metallic nanotips, provides spatially coherent and temporally short electron pulses. The properties of the photoelectron yield give insight into both the material properties of the nanostructure and the exciting laser focus. Ultralong nanoribbons, grown as a single crystal attached to a metallic taper, are sources of electron field emission that have not yet been characterized. In this report, photoemission from gold nanoribbon samples is studied and compared to emission from tungsten and gold tips. We observe that the emission from sharp tips generally depends on one transverse component of the exciting laser field, while the emission of a blunted nanoribbon is found to be sensitive to both components. We propose that this property makes photoemission from nanoribbons a candidate for position-sensitive detection of the longitudinal field component in a tightly focused beam

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced

    Kinetic Theory of Radiation in Nonequilibrium Relativistic Plasmas

    Full text link
    Many-particle QED is applied to kinetic theory of radiative processes in many- component plasmas with relativistic electrons and nonrelativistic heavy particles. Within the framework of nonequilibrium Green's function technique, transport and mass-shell equations for fluctuations of the electromagnetic field are obtained. We show that the transverse field correlation functions can be decomposed into sharply peaked (non-Lorentzian) parts that describe resonant (propagating) photons and off-shell parts corresponding to virtual photons in plasmas. Analogous decomposi- tions are found for the longitudinal field correlation functions and the correlation functions of relativistic electrons. As a novel result a kinetic equation for the reso- nant photons with a finite spectral width is derived. The off-shell parts of the particle and field correlation functions are shown to be essential to calculate the local ra- diating power in relativistic plasmas and recover the results of vacuum QED. The influence of plasma effects and collisional broadening of the relativistic quasiparticle spectral function on radiative processes is discussed.Comment: 63 pages, 11 figure

    DBI Inflation in the Tip Region of a Warped Throat

    Get PDF
    Previous work on DBI inflation, which achieves inflation through the motion of a D3D3 brane as it moves through a warped throat compactification, has focused on the region far from the tip of the throat. Since reheating and other observable effects typically occur near the tip, a more detailed study of this region is required. To investigate these effects we consider a generalized warp throat where the warp factor becomes nearly constant near the tip. We find that it is possible to obtain 60 or more e-folds in the constant region, however large non-gaussianities are typically produced due to the small sound speed of fluctuations. For a particular well-studied throat, the Klebanov-Strassler solution, we find that inflation near the tip may be generic and it is difficult to satisfy current bounds on non-gaussianity, but other throat solutions may evade these difficulties.Comment: 26 pages, 1 figure. v1. references added, typos corrected v2. clarifications mad
    • 

    corecore