70 research outputs found

    The promoter of the human interleukin-2 gene contains two octamer-binding sites and is partially activated by the expression of Oct-2

    Get PDF
    The gene encoding interleukin-2 (IL-2) contains a sequence 52 to 326 nucleotides upstream of its transcriptional initiation site that promotes transcription in T cells that have been activated by costimulation with tetradecanoyl phorbol myristyl acetate (TPA) and phytohemagglutinin (PHA). We found that the ubiquitous transcription factor, Oct-1, bound to two previously identified motifs within the human IL-2 enhancer, centered at nucleotides -74 and -251. Each site in the IL-2 enhancer that bound Oct-1 in vitro was also required to achieve a maximal transcriptional response to TPA plus PHA in vivo. Point mutations within either the proximal or distal octamer sequences reduced the response of the enhancer to activation by 54 and 34%, respectively. Because the murine T-cell line EL4 constitutively expresses Oct-2 and requires only TPA to induce transcription of the IL-2 gene, the effect of Oct-2 expression on activation of the IL-2 promoter in Jurkat T cells was determined. Expression of Oct-2 potentiated transcription 13-fold in response to TPA plus PHA and permitted the enhancer to respond to the single stimulus of TPA. Therefore, both the signal requirements and the magnitude of the transcription response of the IL-2 promoter can be modulated by Oct-2

    Thermodynamics with long-range interactions: from Ising models to black-holes

    Get PDF
    New methods are presented which enables one to analyze the thermodynamics of systems with long-range interactions. Generically, such systems have entropies which are non-extensive, (do not scale with the size of the system). We show how to calculate the degree of non-extensivity for such a system. We find that a system interacting with a heat reservoir is in a probability distribution of canonical ensembles. The system still possesses a parameter akin to a global temperature, which is constant throughout the substance. There is also a useful quantity which acts like a {\it local temperatures} and it varies throughout the substance. These quantities are closely related to counterparts found in general relativity. A lattice model with long-range spin-spin coupling is studied. This is compared with systems such as those encountered in general relativity, and gravitating systems with Newtonian-type interactions. A long-range lattice model is presented which can be seen as a black-hole analog. One finds that the analog's temperature and entropy have many properties which are found in black-holes. Finally, the entropy scaling behavior of a gravitating perfect fluid of constant density is calculated. For weak interactions, the entropy scales like the volume of the system. As the interactions become stronger, the entropy becomes higher near the surface of the system, and becomes more area-scaling.Comment: Corrects some typos found in published version. Title changed 22 pages, 2 figure

    Molecular cloning of an enhancer binding protein:Isolation by screening of an expression library with a recognition site DNA

    Get PDF
    A novel strategy has been used to isolate a cDNA clone that encodes a DNA binding domain whose recognition properties overlap those of the mammalian transcription factors H2TF1 and NF-KB. These two factors are distinguished by their cell type distributions and their relative affinities for related sequence elements in the enhancers of the major histocompatibility complex (MHC) class I and immunoglobulin K chain genes. The human cDNA clone was detected by screening a ~ phage expression library with a binding site probe derived from the MHC enhancer. The phage encoded fusion protein binds specifically to both the MHC and K gene enhancers. The cDNA hybridizes to a single copy gene that is expressed as a 10 kb mRNA in both B and non-B cells. The strategy used in this study may prove generally useful in the cloning and analysis of sequence-specific DNA binding proteins

    Characterization of glycan substrates accumulating in GM1 Gangliosidosis

    Get PDF
    Introduction: GM1 gangliosidosis is a rare autosomal recessive genetic disorder caused by the disruption of the GLB1 gene that encodes β-galactosidase, a lysosomal hydrolase that removes β-linked galactose from the non-reducing end of glycans. Deficiency of this catabolic enzyme leads to the lysosomal accumulation of GM1 and its asialo derivative GA1 in β-galactosidase deficient patients and animal models. In addition to GM1 and GA1, there are other glycoconjugates that contain β-linked galactose whose metabolites are substrates for β-galactosidase. For example, a number of N-linked glycan structures that have galactose at their non-reducing end have been shown to accumulate in GM1 gangliosidosis patient tissues and biological fluids. Objective: In this study, we attempt to fully characterize the broad array of GLB1 substrates that require GLB1 for their lysosomal turnover. Results: Using tandem mass spectrometry and glycan reductive isotope labeling with data-dependent mass spectrometry, we have confirmed the accumulation of glycolipids (GM1 and GA1) and N-linked glycans with terminal beta-linked galactose. We have also discovered a novel set of core 1 and 2 O-linked glycan metabolites, many of which are part of structurally-related isobaric series that accumulate in disease. In the brain of GLB1 null mice, the levels of these glycan metabolites increased along with those of both GM1 and GA1 as a function of age. In addition to brain tissue, we found elevated levels of both N-linked and O-linked glycan metabolites in a number of peripheral tissues and in urine. Both brain and urine samples from human GM1 gangliosidosis patients exhibited large increases in steady state levels for the same glycan metabolites, demonstrating their correlation with this disease in humans as well. Conclusions: Our studies illustrate that GLB1 deficiency is not purely a ganglioside accumulation disorder, but instead a broad oligosaccharidosis that include representatives of many β-linked galactose containing glycans and glycoconjugates including glycolipids, N-linked glycans, and various O-linked glycans. Accounting for all β-galactosidase substrates that accumulate when this enzyme is deficient increases our understanding of this severe disorder by identifying metabolites that may drive certain aspects of the disease and may also serve as informative disease biomarkers to fully evaluate the efficacy of future therapies

    Global Industry Reorganization and Market Concentration : Automobiles, Steel, and Airlines

    Get PDF
    Glioblastoma multiforme (GBM) is a deadly primary brain malignancy. Glioblastoma stem cells (GSC), which have the ability to self-renew and differentiate into tumor lineages, are believed to cause tumor recurrence due to their resistance to current therapies. A subset of GSCs is marked by cell surface expression of CD133, a glycosylated pentaspan transmembrane protein. The study of CD133-expressing GSCs has been limited by the relative paucity of genetic tools that specifically target them. Here, we present CD133-LV, a lentiviral vector presenting a single chain antibody against CD133 on its envelope, as a vehicle for the selective transduction of CD133-expressing GSCs. We show that CD133-LV selectively transduces CD133+ human GSCs in dose-dependent manner and that transduced cells maintain their stem-like properties. The transduction efficiency of CD133-LV is reduced by an antibody that recognizes the same epitope on CD133 as the viral envelope and by shRNA-mediated knockdown of CD133. Conversely, the rate of transduction by CD133-LV is augmented by overexpression of CD133 in primary human GBM cultures. CD133-LV selectively transduces CD133-expressing cells in intracranial human GBM xenografts in NOD.SCID mice, but spares normal mouse brain tissue, neurons derived from human embryonic stem cells and primary human astrocytes. Our findings indicate that CD133-LV represents a novel tool for the selective genetic manipulation of CD133-expressing GSCs, and can be used to answer important questions about how these cells contribute to tumor biology and therapy resistance

    The internal structure of poly(methyl methacrylate) latexes in nonpolar solvents

    Get PDF
    Hypothesis: Poly(methyl methacrylate) (PMMA) latexes in nonpolar solvents are an excellent model system to understand phenomena in low dielectric media, and understanding their internal structure is critical to characterizing their performance in both fundamental studies of colloidal interactions and in potential industrial applications. Both the PMMA cores and the poly(12-hydroxystearic acid) (PHSA) shells of the latexes are known to be penetrable by solvent and small molecules, but the relevance of this for the properties of these particles is unknown. Experiments: These particles can be prepared in a broad range of sizes, and two PMMA latexes dispersed in n-dodecane (76 and 685 nm in diameter) were studied using techniques appropriate to their size. Small-angle scattering (using both neutrons and X-rays) was used to study the small latexes, and analytical centrifugation was used to study the large latexes. These studies enabled the calculation of the core densities and the amount of solvent in the stabilizer shells for both latexes. Both have consequences on interpreting measurements using these latexes. Findings: The PHSA shells are highly solvated (∼85% solvent by volume), as expected for effective steric stabilizers. However, the PHSA chains do contribute to the intensity of neutron scattering measurements on concentrated dispersions and cannot be ignored. The PMMA cores have a slightly lower density than PMMA homopolymer, which shows that only a small free volume is required to allow small molecules to penetrate into the cores. Interestingly, the observations are essentially the same, regardless of the size of the particle; these are general features of these polymer latexes. Despite the latexes being used as a model physical system, the internal chemical structure is complex and must be fully considered when characterizing them

    A Negative Regulatory Element Controls mRNA Abundance of the Leishmania mexicana Paraflagellar Rod Gene PFR2†

    No full text
    The Leishmania mexicana PFR2 locus encodes a component of the paraflagellar rod (PFR), a flagellar structure found only in the insect stage of the life cycle. PFR2 mRNA levels are 10-fold lower in the mammalian stage than in the insect stage. Nuclear run-on experiments indicate that the change in PFR2 mRNA abundance is achieved posttranscriptionally. Deletion and block substitution analysis of the entire 1,400-nucleotide 3′ untranslated region (UTR) of PFR2C led to the identification of a regulatory element contained within 10 nucleotides of the 3′ UTR, termed the PFR regulatory element (PRE), that is necessary for the 10-fold regulation of PFR2 mRNA levels. Comparison of the half-lives of PFR2 transcripts, identical except for the presence or absence of the PRE, revealed that the PRE acts by destabilizing the PFR2 mRNA in amastigotes. The PRE was inserted into a construct which directs the constitutive expression of a chimeric PFR2 transcript. Insertion of the PRE resulted in regulated expression of this transcript, demonstrating that the regulatory element is sufficient for promastigote-specific expression. Since the PRE is present in the 3′ UTR of all L. mexicana PFR genes examined so far, we propose that it serves a means of coordinating expression of PFR genes

    Effect of altered Na +

    No full text
    • …
    corecore