99 research outputs found

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Mathematical Modeling of the Heat-Shock Response in HeLa Cells

    Get PDF
    AbstractThe heat-shock response is a key factor in diverse stress scenarios, ranging from hyperthermia to protein folding diseases. However, the complex dynamics of this physiological response have eluded mathematical modeling efforts. Although several computational models have attempted to characterize the heat-shock response, they were unable to model its dynamics across diverse experimental datasets. To address this limitation, we mined the literature to obtain a compendium of in vitro hyperthermia experiments investigating the heat-shock response in HeLa cells. We identified mechanisms previously discussed in the experimental literature, such as temperature-dependent transcription, translation, and heat-shock factor (HSF) oligomerization, as well as the role of heat-shock protein mRNA, and constructed an expanded mathematical model to explain the temperature-varying DNA-binding dynamics, the presence of free HSF during homeostasis and the initial phase of the heat-shock response, and heat-shock protein dynamics in the long-term heat-shock response. In addition, our model was able to consistently predict the extent of damage produced by different combinations of exposure temperatures and durations, which were validated against known cellular-response patterns. Our model was also in agreement with experiments showing that the number of HSF molecules in a HeLa cell is roughly 100 times greater than the number of stress-activated heat-shock element sites, further confirming the model’s ability to reproduce experimental results not used in model calibration. Finally, a sensitivity analysis revealed that altering the homeostatic concentration of HSF can lead to large changes in the stress response without significantly impacting the homeostatic levels of other model components, making it an attractive target for intervention. Overall, this model represents a step forward in the quantitative understanding of the dynamics of the heat-shock response

    Article Mathematical Modeling of the Heat-Shock Response in HeLa Cells

    No full text
    ABSTRACT The heat-shock response is a key factor in diverse stress scenarios, ranging from hyperthermia to protein folding diseases. However, the complex dynamics of this physiological response have eluded mathematical modeling efforts. Although several computational models have attempted to characterize the heat-shock response, they were unable to model its dynamics across diverse experimental datasets. To address this limitation, we mined the literature to obtain a compendium of in vitro hyperthermia experiments investigating the heat-shock response in HeLa cells. We identified mechanisms previously discussed in the experimental literature, such as temperature-dependent transcription, translation, and heat-shock factor (HSF) oligomerization, as well as the role of heat-shock protein mRNA, and constructed an expanded mathematical model to explain the temperature-varying DNA-binding dynamics, the presence of free HSF during homeostasis and the initial phase of the heat-shock response, and heat-shock protein dynamics in the long-term heat-shock response. In addition, our model was able to consistently predict the extent of damage produced by different combinations of exposure temperatures and durations, which were validated against known cellular-response patterns. Our model was also in agreement with experiments showing that the number of HSF molecules in a HeLa cell is roughly 100 times greater than the number of stress-activated heat-shock element sites, further confirming the model's ability to reproduce experimental results not used in model calibration. Finally, a sensitivity analysis revealed that altering the homeostatic concentration of HSF can lead to large changes in the stress response without significantly impacting the homeostatic levels of other model components, making it an attractive target for intervention. Overall, this model represents a step forward in the quantitative understanding of the dynamics of the heat-shock response

    Alterations in tissue microRNA after heat stress in the conscious rat: potential biomarkers of organ-specific injury

    No full text
    Abstract Background Heat illness remains a significant cause of morbidity in susceptible populations. Recent research elucidating the cellular mechanism of heat stress leading to heat illness may provide information to develop better therapeutic interventions, risk assessment strategies, and early biomarkers of organ damage. microRNA (miRNA) are promising candidates for therapeutic targets and biomarkers for a variety of clinical conditions since there is the potential for high specificity for individual tissues and unique cellular functions. The objective of this study was to identify differentially expressed microRNAs and their putative mRNA targets in the heart, liver, kidney, and lung in rats at three time points: during heat stress (i.e., when core temperature reached 41.8 °C), or following a 24 or 48 h recovery period. Results Rats did not show histological evidence of tissue pathology until 48 h after heat stress, with 3 out of 6 rats showing cardiac inflammation and renal proteinosis at 48 h. The three rats with cardiac and renal pathology had 86, 7, 159, and 37 differentially expressed miRNA in the heart, liver, kidney, or lung, respectively compared to non-heat stressed control animals. During heat stress one differentially expressed miRNA was found in the liver and five in the lung, with no other modulated miRNA after 24 h or 48 h in animals with no evidence of organ injury. Pathway enrichment analysis revealed enrichment in functional pathways associated with heat stress, with the greatest effects observed in animals with histological evidence of cardiac and renal damage at 48 h. Inhibiting miR-21 in cultured cardiomyocytes increased the percent apoptotic cells five hours after heat stress from 70.9 ± 0.8 to 84.8 ± 2.2%. Conclusions Global microRNA and transcriptomics analysis suggested that perturbed miRNA due to heat stress are involved in biological pathways related to organ injury, energy metabolism, the unfolded protein response, and cellular signaling. These miRNA may serve as biomarkers of organ injury and potential pharmacological targets for preventing heat illness or organ injury

    Population Dynamics of Pinfish in the Eastern Gulf of Mexico (1998-2016)

    No full text
    Forage fishes play an important role in marine ecosystems by transferring energy and nutrients through the food web. The population dynamics of forage species can therefore have cascading effects across multiple trophic levels. Here, we analyzed a 19-year dataset on Pinfish (Lagodon rhomboides) across four eastern Gulf of Mexico estuaries to investigate population dynamics, inter- and intra-annual synchrony, metapopulation portfolio effects, growth, and habitat effects. Young-of-year growth rates did not differ among estuaries. The population dynamics of these four systems were stable in the long-term, but highly dynamic inter-annually. Intra-annual dynamics were stable and predictable despite variation in long-term means. Some estuaries exhibited positive inter-annual synchrony, and all four estuaries were synchronous intra-annually. There was evidence for stronger portfolio effects for the entire four-estuary metapopulation, as well as for the two northern estuaries while the southern estuaries appeared to act as a single population. Submerged aquatic vegetation was by far the most important predictor for both presence and abundance of Pinfish. It is important to understand the factors driving forage fish population fluctuations to better predict ecosystem effects, including those to species of economic and ecological importance. These predictors can be useful for the implementation of ecosystem-based management decisions

    Genome-wide gene expression profiling of acute metal exposures in male zebrafish

    Get PDF
    To capture global responses to metal poisoning and mechanistic insights into metal toxicity, gene expression changes were evaluated in whole adult male zebrafish following acute 24 h high dose exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride or sodium dichromate at concentrations corresponding to their respective 96 h LC20, LC40 and LC60 (i.e. 96 h concentrations at which 20%, 40% and 60% lethality is expected, respectively). Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal exposure. Here we describe in detail the contents and quality controls for the gene expression and other data associated with the study published by Hussainzada and colleagues in BMC Pharmacology and Toxicology (Hussainzada et al., 2014) with the data uploaded to Gene Expression Omnibus (accession number GSE50648)

    Identifying a predictive gene signature and signaling networks/pathways associated with acute kidney injury

    No full text
    Poster presented in SOT 2016<div><br></div><div>Understanding the molecular mechanisms and signaling networks of acute kidney injury (AKI) will aid in biomarker development. In this study, we carried out co-expression-based analyses of DrugMatrix, a toxicogenomics database with kidney gene expression data from rats after exposure to diverse chemicals. We used the iterative signature algorithm and exhaustively generated modules using 50 different parameter combinations. We clustered the modules using gene and condition overlap scores and obtained 16 module clusters. Two of the module clusters showed activation in chemical exposures causing kidney injury and mapped well-known AKI marker genes such as <i>Havcr1</i>, <i>Tff3,</i> and <i>Clu</i>. We used the genes in these AKI-relevant module clusters to develop a signature of 30 genes that could assess the potential of a chemical to cause kidney injury well before injury actually occurs. We integrated AKI-relevant module cluster genes with protein-protein interaction networks and identified the involvement of immunoproteasomes in AKI. To identify biological networks and processes linked to <em>Havcr1</em>, we determined genes within the modules that frequently co-express with <em>Havcr1</em>, including <em>Cd44</em>, <em>Plk2</em>, <em>Mdm2</em>, <em>Hnmt</em>, <em>Macrod1</em>, and <em>Gtpbp4</em>. In this gene set, CD44 is a potential non-invasive biomarker candidate as it is up-regulated during AKI, undergoes cleavage of its ectodomain, and is secreted in urine. Overall, our analysis shows data mining of toxicological big data and identification of new insights/biomarker candidates for acute kidney injury.</div
    corecore