25 research outputs found

    Oxidation resistance of graphene-coated Cu and Cu/Ni alloy

    Full text link
    The ability to protect refined metals from reactive environments is vital to many industrial and academic applications. Current solutions, however, typically introduce several negative effects, including increased thickness and changes in the metal physical properties. In this paper, we demonstrate for the first time the ability of graphene films grown by chemical vapor deposition to protect the surface of the metallic growth substrates of Cu and Cu/Ni alloy from air oxidation. SEM, Raman spectroscopy, and XPS studies show that the metal surface is well protected from oxidation even after heating at 200 \degree C in air for up to 4 hours. Our work further shows that graphene provides effective resistance against hydrogen peroxide. This protection method offers significant advantages and can be used on any metal that catalyzes graphene growth

    Association of IL-4RA single nucleotide polymorphisms, HLA-DR and HLA-DQ in children with Alternaria-sensitive moderate-severe asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma afflicts 6% to 8% of the United States population, and severe asthma represents approximately 10% of asthmatic patients. Several epidemiologic studies in the United States and Europe have linked <it>Alternaria </it>sensitivity to both persistence and severity of asthma. In order to begin to understand genetic risk factors underlying <it>Alternaria </it>sensitivity and asthma, in these studies we examined T cell responses to <it>Alternaria </it>antigens, HLA Class II restriction and HLA-DQ protection in children with severe asthma.</p> <p>Methods</p> <p>Sixty children with <it>Alternaria</it>-sensitive moderate-severe asthma were compared to 49 children with <it>Alternaria</it>-sensitive mild asthma. We examined HLA-DR and HLA-DQ frequencies in <it>Alternaria</it>-sensitive asthmatic by HLA typing. To determine ratios of Th1/Th2 <it>Alternaria</it>-specific T-cells, cultures were stimulated in media alone, <it>Alternaria alternata </it>extract and Alt a1. Sensitivity to IL-4 stimulation was measured by up-regulation of CD23 on B cells.</p> <p>Results</p> <p>Children with <it>Alternaria</it>-sensitive moderate-severe asthma trended to have increased sensitivities to <it>Cladosporium </it>(46% versus 35%), to <it>Aspergillus </it>(43% versus 28%), and significantly increased sensitivities to trees (78% versus 57%) and to weeds (68% versus 48%). The IL-4RA ile75val polymorphism was significantly increased in <it>Alternaria</it>-sensitive moderate-severe asthmatics, 83% (0.627 allele frequency) compared to <it>Alternaria</it>-sensitive mild asthmatics, 57% (0.388 allele frequency). This was associated with increased sensitivity to IL-4 stimulation measured by significantly increased IL-4 stimulated CD23 expression on CD19+ and CD86+CD19+ B cells of <it>Alternaria</it>-sensitive moderate-severe asthmatics. IL-5 and IL-13 synthesis was significantly increased in <it>Alternaria</it>-sensitive moderate-severe asthmatics compared to mild asthmatics to <it>Alternaria </it>extract and Alt a1 stimulation. The frequency of HLA-DQB1*03 allele was significantly decreased in <it>Alternaria</it>-sensitive moderate-severe asthmatics compared to mild asthmatics, 39% versus 63%, with significantly decreased allele frequency, 0.220 versus 0.398.</p> <p>Summary</p> <p>In children with <it>Alternaria</it>-sensitive moderate severe asthma, there was an increased Th2 response to <it>Alternaria </it>stimulation and increased sensitivity to IL-4 stimulation. This skewing towards a Th2 response was associated with an increased frequency of the IL-4RA ile75val polymorphism. In evaluating the HLA association, there was a decreased frequency of HLA-DQB1*03 in <it>Alternaria</it>-sensitive moderate severe asthmatic children consistent with previous studies suggest that HLA-DQB1*03 may be protective against the development of mold-sensitive severe asthma.</p

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    Open data from the third observing run of LIGO, Virgo, KAGRA and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in April of 2019 and lasting six months, O3b starting in November of 2019 and lasting five months, and O3GK starting in April of 2020 and lasting 2 weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main dataset, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages.Comment: 27 pages, 3 figure

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore