620 research outputs found

    Quantum limits on phase-shift detection using multimode interferometers

    Get PDF
    Fundamental phase-shift detection properties of optical multimode interferometers are analyzed. Limits on perfectly distinguishable phase shifts are derived for general quantum states of a given average energy. In contrast to earlier work, the limits are found to be independent of the number of interfering modes. However, the reported bounds are consistent with the Heisenberg limit. A short discussion on the concept of well-defined relative phase is also included.Comment: 6 pages, 3 figures, REVTeX, uses epsf.st

    Sub-wavelength lithography over extended areas

    Get PDF
    We demonstrate a systematic approach to sub-wavelength resolution lithographic image formation on films covering areas larger than a wavelength squared. For example, it is possible to make a lithographic pattern with a feature size resolution of λ/[2(N+1)]\lambda/[2(N+1)] by using a particular 2M2 M-photon, multi-mode entangled state, where N<MN < M, and banks of birefringent plates. By preparing a statistically mixed such a state one can form any pixel pattern on a (N+1)2MN×(N+1)2MN(N+1) 2^{M-N} \times (N+1) 2^{M-N} pixel grid occupying a square with a side of L=2MN1L=2^{M-N-1} wavelengths. Hence, there is a trade-off between the exposed area, the minimum lithographic feature size resolution, and the number of photons used for the exposure. We also show that the proposed method will work even under non-ideal conditions, albeit with somewhat poorer performance.Comment: 8 pages, 8 figures, 1 table. Written in RevTe

    2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole

    Full text link
    Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 2022 (AS22

    Report on the sixth blind test of organic crystal-structure prediction methods

    No full text
    The sixth blind test of organic crystal-structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal, and a bulky flexible molecule. This blind test has seen substantial growth in the number of submissions, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and "best practices" for performing CSP calculations. All of the targets, apart from a single potentially disordered Z` = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms

    Diabetes, atherosclerosis, and stenosis by AI

    Get PDF
    OBJECTIVEThis study evaluates the relationship between atherosclerotic plaque characteristics (APCs) and angiographic stenosis severity in patients with and without diabetes. Whether APCs differ based on lesion severity and diabetes status is unknown.RESEARCH DESIGN AND METHODSWe retrospectively evaluated 303 subjects from the Computed TomogRaphic Evaluation of Atherosclerotic Determinants of Myocardial IsChEmia (CREDENCE) trial referred for invasive coronary angiography with coronary computed tomographic angiography (CCTA) and classified lesions as obstructive (≥50% stenosed) or nonobstructive using blinded core laboratory analysis of quantitative coronary angiography. CCTA quantified APCs, including plaque volume (PV), calcified plaque (CP), noncalcified plaque (NCP), low-density NCP (LD-NCP), lesion length, positive remodeling (PR), high-risk plaque (HRP), and percentage of atheroma volume (PAV; PV normalized for vessel volume). The relationship between APCs, stenosis severity, and diabetes status was assessed.RESULTSAmong the 303 patients, 95 (31.4%) had diabetes. There were 117 lesions in the cohort with diabetes, 58.1% of which were obstructive. Patients with diabetes had greater plaque burden (P = 0.004). Patients with diabetes and nonobstructive disease had greater PV (P = 0.02), PAV (P = 0.02), NCP (P = 0.03), PAV NCP (P = 0.02), diseased vessels (P = 0.03), and maximum stenosis (P = 0.02) than patients without diabetes with nonobstructive disease. APCs were similar between patients with diabetes with nonobstructive disease and patients without diabetes with obstructive disease. Diabetes status did not affect HRP or PR. Patients with diabetes had similar APCs in obstructive and nonobstructive lesions.CONCLUSIONSPatients with diabetes and nonobstructive stenosis had an association to similar APCs as patients without diabetes who had obstructive stenosis. Among patients with nonobstructive disease, patients with diabetes had more total PV and NCP.Cardiolog

    Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases

    Get PDF
    Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 × 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Childhood malnutrition is associated with high morbidity and mortality globally1. Undernourished children are more likely to experience cognitive, physical, and metabolic developmental impairments that can lead to later cardiovascular disease, reduced intellectual ability and school attainment, and reduced economic productivity in adulthood2. Child growth failure (CGF), expressed as stunting, wasting, and underweight in children under five years of age (0�59 months), is a specific subset of undernutrition characterized by insufficient height or weight against age-specific growth reference standards3�5. The prevalence of stunting, wasting, or underweight in children under five is the proportion of children with a height-for-age, weight-for-height, or weight-for-age z-score, respectively, that is more than two standard deviations below the World Health Organization�s median growth reference standards for a healthy population6. Subnational estimates of CGF report substantial heterogeneity within countries, but are available primarily at the first administrative level (for example, states or provinces)7; the uneven geographical distribution of CGF has motivated further calls for assessments that can match the local scale of many public health programmes8. Building from our previous work mapping CGF in Africa9, here we provide the first, to our knowledge, mapped high-spatial-resolution estimates of CGF indicators from 2000 to 2017 across 105 low- and middle-income countries (LMICs), where 99 of affected children live1, aggregated to policy-relevant first and second (for example, districts or counties) administrative-level units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the ambitious World Health Organization Global Nutrition Targets to reduce stunting by 40 and wasting to less than 5 by 2025. Large disparities in prevalence and progress exist across and within countries; our maps identify high-prevalence areas even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where the highest-need populations reside, these geospatial estimates can support policy-makers in planning interventions that are adapted locally and in efficiently directing resources towards reducing CGF and its health implications. © 2020, The Author(s)

    Addressing climate change with behavioral science: a global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors
    corecore