109 research outputs found
Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France
We perform a fault-based
probabilistic seismic hazard assessment (PSHA) exercise in the Upper Rhine
Graben to quantify the relative influence of fault parameters on the hazard
at the Fessenheim nuclear power plant site. Specifically, we show that the
potentially active faults described in the companion paper (Jomard et al.,
2017, hereafter Part 1) are the dominant factor in hazard estimates at the
low annual probability of exceedance relevant for the safety assessment of
nuclear installations. Geological information documenting the activity of the
faults in this region, however, remains sparse, controversial and affected by
a high degree of uncertainty. A logic tree approach is thus implemented to
explore the epistemic uncertainty and quantify its impact on the seismic
hazard estimates. Disaggregation of the peak ground acceleration (PGA) hazard
at a 10 000-year return period shows that the Rhine River fault is the main
seismic source controlling the hazard level at the site. Sensitivity tests
show that the uncertainty on the slip rate of the Rhine River fault is the
dominant factor controlling the variability of the seismic hazard level,
greater than the epistemic uncertainty due to ground motion prediction
equations (GMPEs). Uncertainty on slip rate estimates from 0.04 to
0.1 mm yr−1 results in a 40 to 50 % increase in hazard levels
at the 10 000-year target return period. Reducing epistemic uncertainty in
future fault-based PSHA studies at this site will thus require (1) performing
in-depth field studies to better characterize the seismic potential of the
Rhine River fault; (2) complementing GMPEs with more physics-based modelling
approaches to better account for the near-field effects of ground motion and
(3) improving the modelling of the background seismicity. Indeed, in this
exercise, we assume that background earthquakes can only host M < 6. 0
earthquakes. However, this assumption is debatable, since faults that can
host M > 6. 0 earthquakes have been recently identified at depth within
the Upper Rhine Graben (see Part 1) but are not accounted for in this
exercise since their potential activity has not yet been described
Fault activity in the epicentral area of the 1580 Dover Strait (Pas-de-Calais) earthquake (northwestern Europe)
On 1580 April 6 one of the most destructive earthquakes of northwestern Europe took place in the Dover Strait (Pas de Calais). The epicentre of this seismic event, the magnitude of which is estimated to have been about 6.0, has been located in the offshore continuation of the North Artois shear zone, a major Variscan tectonic structure that traverses the Dover Strait. The location of this and two other moderate magnitude historical earthquakes in the Dover Strait suggests that the North Artois shear zone or some of its fault segments may be presently active. In order to investigate the possible fault activity in the epicentral area of the AD 1580 earthquake, we have gathered a large set of bathymetric and seismic-reflection data covering the almost-entire width of the Dover Strait. These data have revealed a broad structural zone comprising several subparallel WNW–ESE trending faults and folds, some of them significantly offsetting the Cretaceous bedrock. The geophysical investigation has also shown some indication of possible Quaternary fault activity. However, this activity only appears to have affected the lowermost layers of the sediment infilling Middle Pleistocene palaeobasins. This indicates that, if these faults have been active since Middle Pleistocene, their slip rates must have been very low. Hence, the AD 1580 earthquake appears to be a very infrequent event in the Dover Strait, representing a good example of the moderate magnitude earthquakes that sometimes occur in plate interiors on faults with unknown historical seismicity
Efficient photogeneration of charge carriers in silicon nanowires with a radial doping gradient
From electrodeless time-resolved microwave conductivity measurements, the
efficiency of charge carrier generation, their mobility, and decay kinetics on
photo-excitation were studied in arrays of Si nanowires grown by the
vapor-liquid-solid mechanism. A large enhancement in the magnitude of the
photoconductance and charge carrier lifetime are found depending on the
incorporation of impurities during the growth. They are explained by the
internal electric field that builds up, due to a higher doped sidewalls, as
revealed by detailed analysis of the nanowire morphology and chemical
composition
Relative energetics and structural properties of zirconia using a self-consistent tight-binding model
We describe an empirical, self-consistent, orthogonal tight-binding model for
zirconia, which allows for the polarizability of the anions at dipole and
quadrupole levels and for crystal field splitting of the cation d orbitals.
This is achieved by mixing the orbitals of different symmetry on a site with
coupling coefficients driven by the Coulomb potentials up to octapole level.
The additional forces on atoms due to the self-consistency and polarizabilities
are exactly obtained by straightforward electrostatics, by analogy with the
Hellmann-Feynman theorem as applied in first-principles calculations. The model
correctly orders the zero temperature energies of all zirconia polymorphs. The
Zr-O matrix elements of the Hamiltonian, which measure covalency, make a
greater contribution than the polarizability to the energy differences between
phases. Results for elastic constants of the cubic and tetragonal phases and
phonon frequencies of the cubic phase are also presented and compared with some
experimental data and first-principles calculations. We suggest that the model
will be useful for studying finite temperature effects by means of molecular
dynamics.Comment: to be published in Physical Review B (1 march 2000
Memristive and neuromorphic behavior in a Li x CoO 2 nanobattery
International audienceThe phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of Li(x)CoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits
A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy
We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting
ABINIT: Overview and focus on selected capabilities
Paper published as part of the special topic on Electronic Structure SoftwareABINIT is probably the first electronic-structure package to have been released under an open-source license about 20 years ago. It implements density functional theory, density-functional perturbation theory (DFPT), many-body perturbation theory (GW approximation and
Bethe–Salpeter equation), and more specific or advanced formalisms, such as dynamical mean-field theory (DMFT) and the “temperaturedependent effective potential” approach for anharmonic effects. Relying on planewaves for the representation of wavefunctions, density, and
other space-dependent quantities, with pseudopotentials or projector-augmented waves (PAWs), it is well suited for the study of periodic
materials, although nanostructures and molecules can be treated with the supercell technique. The present article starts with a brief description of the project, a summary of the theories upon which ABINIT relies, and a list of the associated capabilities. It then focuses on selected
capabilities that might not be present in the majority of electronic structure packages either among planewave codes or, in general, treatment
of strongly correlated materials using DMFT; materials under finite electric fields; properties at nuclei (electric field gradient, Mössbauer shifts,
and orbital magnetization); positron annihilation; Raman intensities and electro-optic effect; and DFPT calculations of response to strain perturbation (elastic constants and piezoelectricity), spatial dispersion (flexoelectricity), electronic mobility, temperature dependence of the gap,
and spin-magnetic-field perturbation. The ABINIT DFPT implementation is very general, including systems with van der Waals interaction or
with noncollinear magnetism. Community projects are also described: generation of pseudopotential and PAW datasets, high-throughput
calculations (databases of phonon band structure, second-harmonic generation, and GW computations of bandgaps), and the library LIBPAW.
ABINIT has strong links with many other software projects that are briefly mentioned.This work (A.H.R.) was supported by the DMREF-NSF Grant No. 1434897, National Science Foundation OAC-1740111, and U.S. Department of Energy DE-SC0016176 and DE-SC0019491 projects.
N.A.P. and M.J.V. gratefully acknowledge funding from the Belgian Fonds National de la Recherche Scientifique (FNRS) under Grant No. PDR T.1077.15-1/7. M.J.V. also acknowledges a sabbatical “OUT” grant at ICN2 Barcelona as well as ULiège and the Communauté Française de Belgique (Grant No. ARC AIMED G.A. 15/19-09).
X.G. and M.J.V. acknowledge funding from the FNRS under Grant No. T.0103.19-ALPS.
X.G. and G.-M. R. acknowledge support from the Communauté française de Belgique through the SURFASCOPE Project (No. ARC 19/24-057).
X.G. acknowledges the hospitality of the CEA DAM-DIF during the year 2017.
G.H. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 (Materials Project Program No. KC23MP).
The Belgian authors acknowledge computational resources from supercomputing facilities of the University of Liège, the Consortium des Equipements de Calcul Intensif (Grant No. FRS-FNRS G.A. 2.5020.11), and Zenobe/CENAERO funded by the Walloon Region under Grant No. G.A. 1117545.
M.C. and O.G. acknowledge support from the Fonds de Recherche du Québec Nature et Technologie (FRQ-NT), Canada, and the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant No. RGPIN-2016-06666.
The implementation of the libpaw library (M.T., T.R., and D.C.) was supported by the ANR NEWCASTLE project (Grant No. ANR-2010-COSI-005-01) of the French National Research Agency.
M.R. and M.S. acknowledge funding from Ministerio de Economia, Industria y Competitividad (MINECO-Spain) (Grants Nos. MAT2016-77100-C2-2-P and SEV-2015-0496) and Generalitat de Catalunya (Grant No. 2017 SGR1506). This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation program (Grant Agreement No. 724529).
P.G. acknowledges support from FNRS Belgium through PDR (Grant No. HiT4FiT), ULiège and the Communauté française de Belgique through the ARC project AIMED, the EU and FNRS through M.ERA.NET project SIOX, and the European Funds for Regional Developments (FEDER) and the Walloon Region in the framework of the operational program “Wallonie-2020.EU” through the project Multifunctional thin films/LoCoTED.
The Flatiron Institute is a division of the Simons Foundation.
A large part of the data presented in this paper is available directly from the Abinit Web page www.abinit.org. Any other data not appearing in this web page can be provided by the corresponding author upon reasonable request.Peer reviewe
Morphological analysis of deep-seated gravitational slope deformation (DSGSD) in the western part of the Argentera massif. A morpho-tectonic control?
International audienceThe western part of the Argentera–Mercantour massif (French Alps) hosts very large currently active landslides responsible of many disorders and risks to the highly touristic valleys of the Mercantour National Park and skiing resorts. A regional scale mapping of gravitational deformations has been compared to the main geo-structures of the massif. A relative chronology of the events has been established and locally compared to absolute 10Be dating obtained from previous studies. Two types of large slope destabilisations were identified as follows: deep-seated landslides (DSL) that correspond to rock volumes bounded by a failure surface, and deep-seated gravitational slope deformations (DSGSD) defined as large sagging zones including gravitation landforms such as trenches and scarps or counterscarps. Gravitational landforms are mainly collinear to major N140°E and N020°E tectonic faults, and the most developed DSGSD are located in areas where the slope direction is comparable to the orientation of faults. DSL are mostly included within DSGSD zones and located at the slopes foot. Most of DSL followed a similar failure evolution process according to postglacial over steepened topographies and resulting from a progressive failure growing from the foot to the top of the DSGSD that lasts over a 10 ky time period. This massif-scale approach shows that large-scale DSGSD had a peak of activity from the end of the last deglaciation, to approximately 7000 years bp. Both morphologic and tectonic controls can be invoked to explain the gravitational behaviour of the massif slopes
- …