13 research outputs found

    Do populations of Asterias rubens produce viable larvae every year?

    No full text
    info:eu-repo/semantics/nonPublishe

    Contrasting relationships between pyloric caecum and gonad growth in the starfish <i>Asterias rubens</i>: combined field and experimental approaches

    No full text
    The common starfish, Asterias rubens, occurs in fluctuating environments in the North Atlantic. To better understand energy allocation dynamics, we recorded gonad, body wall, and pyloric caeca (storage organ) indices between 2000 and 2004 from three different habitats. We applied a Fourier transform to the data to evaluate and compare the seasonal variation in these indices. Specific effects of emersion and salinity variation were examined in two laboratory studies. Differences in energy allocation were found between sites and temporally within sites. Food availability appeared to be the most important factor controlling allocation dynamics while fluctuating salinity and/or emersion had a significant but smaller impact. Only severe food shortage reduced reproductive investment indicating a preferential energy allocation to gonads. This study is the first to encompass a broad range of populations over several reproduction cycles and emphasizes the ability of A. rubens to adapt to a fluctuating environment

    Factors controlling juvenile growth and population structure of the starfish Asterias rubens in intertidal habitats: Field and experimental approaches

    No full text
    The dynamics of intertidal populations of the starfish Asterias rubens, living in contrasted habitats and over a broad geographical range, were studied from March 2000 to November 2002 using modal analysis. As only 1 juvenile (first year after recruitment) and 1 adult (subsequent years) modes could be distinguished; only juvenile growth was quantified. Concomitantly, experiments were carried out to test several factors assumed to influence juvenile growth: food quantity and quality, emersion, salinity variations and temperature. Three different juvenile growth patterns were evidenced: (1) a fast and protracted growth linked to high food availability and lack of disturbance; (2) a winter cessation of growth likely due to a seasonal increase of emersion-related stress and salinity variations; and (3) disrupted juvenile dynamics, which was encountered in 2 populations. In the first one, estuarine salinity conditions limited growth and, combined with food depletion, led to the extinction of the population. In the second one, wave action confined most of the population to a restricted area with low food levels. In the third scenario, intraspecific competition for food was probably at the source of an unusual growth pattern in which most juveniles did not grow while a small proportion achieved a medium growth rate. © 2011 Marine Biological Association of the United Kingdom.IF: 1,056SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Contrasting relationships between pyloric caecum and gonad growth in the starfish Asterias rubens: Combined field and experimental approaches

    No full text
    The common starfish, Asterias rubens, occurs in fluctuating environments in the North Atlantic. To better understand energy allocation dynamics, we recorded gonad, body wall, and pyloric caeca (storage organ) indices between 2000 and 2004 from three different habitats. We applied a Fourier transform to the data to evaluate and compare the seasonal variation in these indices. Specific effects of emersion and salinity variation were examined in two laboratory studies. Differences in energy allocation were found between sites and temporally within sites. Food availability appeared to be the most important factor controlling allocation dynamics while fluctuating salinity and/or emersion had a significant but smaller impact. Only severe food shortage reduced reproductive investment indicating a preferential energy allocation to gonads. This study is the first to encompass a broad range of populations over several reproduction cycles and emphasizes the ability of A. rubens to adapt to a fluctuating environment. Copyright © Marine Biological Association of the United Kingdom 2012.IF: 1,056SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Effects of the Erika oil spill on the common starfish Asterias rubens, evaluated by field and laboratory studies.

    No full text
    Impacts of the Erika oil spill on the common starfish Asterias rubens were investigated in the field and using laboratory experiments based on contamination via food at different stages of the starfish reproductive cycle. Two months after the shipwreck, levels of hydrocarbons characteristic of Erika fuel were significantly higher in pyloric ceca and body wall of A. rubens from a contaminated site, compared with control animals from an unpolluted reference area. Concomitant immunological responses and detoxification enzyme activity (CYP1A) were enhanced in the impacted starfish, suggesting rapid biotransformation processes. This was confirmed by laboratory experiments which showed a fast PAH uptake during the 10 first days of contamination and the start of biotransformation processes from the third day. Our study confirms benzo(a)pyrene hydroxylase activity (BPH) in A. rubens and demonstrates the influence of CYP1A in the conversion of insoluble PAHs into soluble derivatives in this species for the first time. The rapidity of decontamination could explain why starfish growth, level of motile activity, reproductive investment, energy storage, and larval development were not significantly affected by these contaminants.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore