82 research outputs found

    Local Expansion of a Panmictic Lineage of Water Bloom-Forming Cyanobacterium Microcystis aeruginosa

    Get PDF
    In previous studies, we have demonstrated that the population structure of the bloom-forming cyanobacterium Microcystis aeruginosa is clonal. Expanded multilocus sequence typing analysis of M. aeruginosa using 412 isolates identified five intraspecific lineages suggested to be panmictic while maintaining overall clonal structure probably due to a reduced recombination rate between lineages. Interestingly, since 2005 most strains belonging to one of these panmictic clusters (group G) have been found in a particular locality (Lake Kasumigaura Basin) in Japan. In this locality, multiple, similar but distinct genotypes of this lineage predominated in the bloom, a pattern that is unprecedented for M. aeruginosa. The population structure underlying blooms associated with this lineage is comparable to epidemics of pathogens. Our results may reveal an expansion of the possible adaptive lineage in a localized aquatic environment, providing us with a unique opportunity to investigate its ecological and biogeographical consequences

    Streptomyces aridus sp. nov., isolated from a high altitude Atacama Desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957.

    Get PDF
    A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9(T), was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9(T) is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448(T). The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9(T) (=NCIMB 14965(T)=NRRL B65268(T)). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10482-017-0838-2) contains supplementary material, which is available to authorized users

    Using social and behavioural science to support COVID-19 pandemic response

    Get PDF
    The COVID-19 pandemic represents a massive global health crisis. Because the crisis requires large-scale behaviour change and places significant psychological burdens on individuals, insights from the social and behavioural sciences can be used to help align human behavior with the recommendations of epidemiologists and public health experts. Here we discuss evidence from a selection of research topics relevant to pandemics, including work on navigating threats, social and cultural influences on behaviour, science communication, moral decision-making, leadership, and stress and coping. In each section, we note the nature and quality of prior research, including uncertainty and unsettled issues. We identify several insights for effective response to the COVID-19 pandemic, and also highlight important gaps researchers should move quickly to fill in the coming weeks and months

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Structural evolution and basin architecture of the Traill Ø region, NE Greenland: A record of polyphase rifting of the East Greenland continental margin

    No full text
    Fault block basins exposed along NE Greenland provide insights into the tectonic evolution of East Greenland and the Norwegian-Greenland Sea. We present a new geological map and cross sections of the Traill Ø region, NE Greenland, which formed the western margin of the VÞring Basin prior to Cenozoic seafloor spreading. Observations support a polyphase rift evolution with three rift phases during Devonian-Triassic, Jurassic-Cretaceous, and Cenozoic time. The greatest amounts of faulting and block rotation occurred during Cenozoic rifting, which we correlate with development of the continent- ocean transition after ca. 56 Ma and the Jan Mayen microcontinent after ca. 36 Ma. A newly devised macrofaunal-based stratigraphic framework for the Cretaceous sandy mudstone succession provides insights into Jurassic- Cretaceous rifting. We identify a reduction in sedimentation rates during the Late Cretaceous; this corresponds to a transition from structurally confined to unconfined sedimentation that coincides with increased clastic sedimentation to the VÞring and MÞre Basins derived from East Greenland. With each rift phase we record an increase in the number of active faults and a decrease in the spacing between them. We attribute this to fault block rotation that leads to an excess build-up of stress that can only be released by the creation of new steep faults. In addition, we observe a stepwise migration of deformation toward the rift axis that we attribute to preexisting lithospheric heterogeneity that was modified during subsequent rift and post-rift phases. Such observations are not readily conformable to classic rift evolution models and highlight the importance of post-rift lithospheric processes that occur during polyphase rift evolution

    Structural evolution and basin architecture of the Traill Ø region, NE Greenland: A record of polyphase rifting of the East Greenland continental margin

    No full text
    Fault block basins exposed along NE Greenland provide insights into the tectonic evolution of East Greenland and the Norwegian-Greenland Sea. We present a new geological map and cross sections of the Traill Ø region, NE Greenland, which formed the western margin of the VÞring Basin prior to Cenozoic seafloor spreading. Observations support a polyphase rift evolution with three rift phases during Devonian-Triassic, Jurassic-Cretaceous, and Cenozoic time. The greatest amounts of faulting and block rotation occurred during Cenozoic rifting, which we correlate with development of the continent- ocean transition after ca. 56 Ma and the Jan Mayen microcontinent after ca. 36 Ma. A newly devised macrofaunal-based stratigraphic framework for the Cretaceous sandy mudstone succession provides insights into Jurassic- Cretaceous rifting. We identify a reduction in sedimentation rates during the Late Cretaceous; this corresponds to a transition from structurally confined to unconfined sedimentation that coincides with increased clastic sedimentation to the VÞring and MÞre Basins derived from East Greenland. With each rift phase we record an increase in the number of active faults and a decrease in the spacing between them. We attribute this to fault block rotation that leads to an excess build-up of stress that can only be released by the creation of new steep faults. In addition, we observe a stepwise migration of deformation toward the rift axis that we attribute to preexisting lithospheric heterogeneity that was modified during subsequent rift and post-rift phases. Such observations are not readily conformable to classic rift evolution models and highlight the importance of post-rift lithospheric processes that occur during polyphase rift evolution
    • 

    corecore